We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
@article{ACIRM_2013__3_1_119_0, author = {Emil Saucan}, title = {Metric {Ricci} {Curvature} and {Flow} for {\protect\emph{PL}} {Manifolds}}, journal = {Actes des rencontres du CIRM}, pages = {119--129}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.61}, zbl = {06938609}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.61/} }
Emil Saucan. Metric Ricci Curvature and Flow for PL Manifolds. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 119-129. doi : 10.5802/acirm.61. https://acirm.centre-mersenne.org/articles/10.5802/acirm.61/
[1] S. B. Alexander; R. L. Bishop Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, Differential Geometry and its Applications, Volume 6 (1996) no. 10, pp. 67-86 | DOI | MR | Zbl
[2] E. Appleboim; Y. Hyams; S. Krakovski; C. Sageev; E. Saucan The Scale-Curvature Connection and its Application to Texture Segmentation, Theory and Applications of Mathematics & Computer Science, Volume 3 (2013) no. 1, pp. 38-54 | Zbl
[3] E. Appleboim; E. Saucan; Y. Y. Zeevi Ricci Curvature and Flow for Image Denoising and Superesolution, Proceedings of EUSIPCO 2012 (2012), pp. 2743-2747 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.1749
[4] V. N. Berestovskii Spaces with bounded curvature and distance geometry, Siberian Math. J., Volume 16 (1986) no. 1, pp. 8-19 | DOI | MR
[5] M. Bestvina Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision, Bull. Amer. Math. Soc., Volume 51 (2014) no. 1, pp. 53-70 | DOI | MR | Zbl
[6] L. M. Blumenthal Distance Geometry – Theory and Applications, Claredon Press, Oxford, 1953 | Zbl
[7] L. M. Blumenthal; K. Menger Studies in Geometry, Freeman and Co., San Francisco, CA, 1970 | Zbl
[8] U. Brehm; W. Kühnel Smooth approximation of polyhedral surfaces regarding curvatures, Geometriae Dedicata, Volume 12 (1982) no. 1, pp. 435-461 | MR
[9] Yu. D. Burago; V. A. Zalgaller Isometric piecewise linear immersions of two-dimensional manifolds with polyhedral metrics into , St. Petersburg Math. J., Volume 7 (1996) no. 3, pp. 369-385 | Zbl
[10] B. Chow The Ricci flow on the 2-sphere, J. Differential Geom., Volume 33 (1991) no. 2, pp. 325-334 | DOI | MR | Zbl
[11] B. Chow; F. Luo Combinatorial Ricci Flows on Surfaces, J. Differential Geom., Volume 63 (2003) no. 1, pp. 97-129 | DOI | MR | Zbl
[12] J. Giesen Curve Reconstruction, the Traveling Salesman Problem and Menger’s Theorem on Length, Proceedings of the 15th ACM Symposium on Computational Geometry (SoCG) (1999), pp. 207-216 citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.1749 | MR | Zbl
[13] M. Gromov; W. Thurston Pinching constants for hyperbolic manifolds, Invent. math., Volume 89 (1987) no. 10, pp. 1-12 | DOI | MR | Zbl
[14] D. X. Gu; E. Saucan Metric Ricci curvature for PL manifolds, Geometry (2013), 12 pages pages | DOI | Zbl
[15] X. D. Gu; S.-T. Yau Computational Conformal Geometry, Advanced Lectures in Mathematics 3, International Press, Somerville, MA, 2008
[16] J. Haantjes Distance geometry. Curvature in abstract metric spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, Volume 50 (1947), pp. 302-314 | MR | Zbl
[17] J. Haantjes A characteristic local property of geodesics in certain spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, Volume 54 (1951), pp. 66-73 | MR | Zbl
[18] Q. Han; J.-X. Hong Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs, 130, AMS Providence, RI, 2006
[19] M. Jin; J. Kim; X. D. Gu Discrete Surface Ricci Flow: Theory and Applications, LNCS 4647: Mathematics of Surfaces, Springer-Verlag, Berlin, 2007, pp. 209-232
[20] W. A. Kirk On Curvature of a Metric Space at a Point, Pacific J. Math., Volume 14 (1964), pp. 195-198 | DOI | MR | Zbl
[21] G. Lerman; J. T. Whitehouse On -dimensional -semimetrics and simplex-type inequalities for high-dimensional sine functions, Journal of Approximation Theory, Volume 156 (2009) no. 1, pp. 52-81 | DOI | MR | Zbl
[22] K. Menger Zur allgemeinen Kurventheorie, Fundamenta Mathematicae, Volume 10 (1927) no. 1, pp. 96-115 | DOI | Zbl
[23] J. R. Munkres Elementary Differential Topology (rev. ed.), Princeton University Press, Princeton, N.J., 1966 | MR | Zbl
[24] H. Pajot Analytic Capacity, Rectificabilility, Menger Curvature and the Cauchy Integral, LNM 1799, Springer-Verlag, Berlin, 2002, pp. 302-314 | Zbl
[25] C. Plaut Metric Spaces of Curvature , Handbook of Geometric Topology (Daverman, R. J. and Sher, R. B., editors), 2002, pp. 819-898 | MR
[26] M. Sageev CAT(0) cube complexes and groups, PCMI Lecture Notes (2013), pp. 1-16 (to appear) | Zbl
[27] E. Saucan On a construction of Burago and Zalgaller, The Asian Journal of Mathematics, Volume 16 (2012) no. 4, pp. 587-606 | DOI | MR | Zbl
[28] E. Saucan A Metric Ricci Flow for Surfaces and its Applications, Geometry, Imaging and Computing, Volume 1 (2014) no. 2, pp. 259-301 | DOI | MR | Zbl
[29] E. Saucan; E. Appleboim Curvature Based Clustering for DNA Microarray Data Analysis, LNCS 3523, Springer-Verlag, Berlin, 2005, pp. 405-412
[30] E. Saucan; E. Appleboim Metric Methods in Surface Triangulation, LNCS 5654, Springer-Verlag, Berlin, 2009, pp. 335-355
[31] P. Shvartsman Sobolev -functions on closed subsets of , arXiv:1210.0590, Volume 1 (2012) no. 8, to appear pages
[32] D. A. Stone A combinatorial analogue of a theorem of Myers, Illinois J. Math., Volume 20 (1976) no. 1, pp. 12-21 | DOI | MR | Zbl
[33] D. A. Stone Correction to my paper: “A combinatorial analogue of a theorem of Myers”, Illinois J. Math., Volume 20 (1976) no. 1, pp. 551-554 | Zbl
[34] D. A. Stone Geodesics in Piecewise Linear Manifolds, Trans. Amer. Math. Soc., Volume 215 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl
[35] A. Wald Sur la courbure des surfaces, C. R. Acad. Sci. Paris, Volume 201 (1935) no. 8, pp. 918-920 | Zbl
[36] A. Wald Begreudeung einer koordinatenlosen Differentialgeometrie der Flächen, Ergebnisse e. Mathem. Kolloquims, First Series, Volume 7 (1936) no. 8, pp. 24-46 | Zbl
Cited by Sources: