We present two methods for non-rigid shape matching. Both methods formulate shape matching as an energy minimization problem, where the energy measures distortion of the metric defined on the shapes in one case, or directly describes the physical deformation relating the two shapes in the other case. The first method considers a parametrized relaxation of the widely adopted quadratic assignment problem (QAP) formulation for minimum distortion correspondence between deformable shapes. In order to control the accuracy/sparsity trade-off a weighting parameter is introduced to combine two existing relaxations, namely spectral and game-theoretic. This leads to an approach for deformable shape matching with controllable sparsity. The second method focuses on computing a geometrically consistent and spatially dense matching between two shapes. Rather than mapping points to points it matches infinitesimal surface patches while preserving the geometric structures. In this spirit, matchings are considered as diffeomorphisms between the objects’ surfaces which are by definition geometrically consistent. Based on the observation that such diffeomorphisms can be represented as closed and continuous surfaces in the product space of the two shapes, this leads to a minimal surface problem in this product space. The proposed discrete formulation describes the search space with linear constraints. Computationally, the approach results in a binary linear program whose relaxed version can be solved efficiently in a globally optimal manner.
@article{ACIRM_2013__3_1_107_0, author = {Daniel Cremers and Emanuele Rodol\`a and Thomas Windheuser}, title = {Relaxations for {Minimizing} {Metric} {Distortion} and {Elastic} {Energies} for {3D} {Shape} {Matching}}, journal = {Actes des rencontres du CIRM}, pages = {107--117}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.60}, zbl = {06938608}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.60/} }
TY - JOUR AU - Daniel Cremers AU - Emanuele Rodolà AU - Thomas Windheuser TI - Relaxations for Minimizing Metric Distortion and Elastic Energies for 3D Shape Matching JO - Actes des rencontres du CIRM PY - 2013 SP - 107 EP - 117 VL - 3 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.60/ DO - 10.5802/acirm.60 LA - en ID - ACIRM_2013__3_1_107_0 ER -
%0 Journal Article %A Daniel Cremers %A Emanuele Rodolà %A Thomas Windheuser %T Relaxations for Minimizing Metric Distortion and Elastic Energies for 3D Shape Matching %J Actes des rencontres du CIRM %D 2013 %P 107-117 %V 3 %N 1 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.60/ %R 10.5802/acirm.60 %G en %F ACIRM_2013__3_1_107_0
Daniel Cremers; Emanuele Rodolà; Thomas Windheuser. Relaxations for Minimizing Metric Distortion and Elastic Energies for 3D Shape Matching. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 107-117. doi : 10.5802/acirm.60. https://acirm.centre-mersenne.org/articles/10.5802/acirm.60/
[1] Stephen Boyd; Lieven Vandenberghe Convex Optimization, Cambridge Univ. Press, New York, USA, 2004 | Zbl
[2] E. Boyer; A. M. Bronstein; M. M. Bronstein; B. Bustos; T. Darom; R. Horaud; I. Hotz; Y. Keller; J. Keustermans; A. Kovnatsky; R. Litman; J. Reininghaus; I. Sipiran; D. Smeets; P. Suetens; D. Vandermeulen; A. Zaharescu; V. Zobel SHREC 2011: robust feature detection and description benchmark, ArXiv e-prints (2011)
[3] Alex Bronstein; Michael Bronstein; Umberto Castellani SHREC 2010: Robust Correspondence Benchmark, Eurographics Workshop on 3D Object Retrieval (2010) http://perception.inrialpes.fr/Publications/2010/BBCDGHKKVMOS10
[4] Alex Bronstein; Michael Bronstein; Ron Kimmel Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching, Proc. National Academy of Science (PNAS), Volume 103 (2006) no. 5, pp. 1168-1172 | DOI | MR | Zbl
[5] P. Ciarlet An introduction to differential geometry with applications to elasticity, Springer, Dordrecht, 2005, iv+209 pages Reprinted from J. Elasticity 78/79 (2005), no. 1-3 [MR2196098] | DOI | MR | Zbl
[6] H. Delingette Triangular Springs for Modeling Nonlinear Membranes, IEEE Transactions on Visualisation and Computer Graphics, Volume 14 (2008) no. 2 http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70431
[7] M. Desbrun; A. N. Hirani; M. Leok; J. E. Marsden Discrete Exterior Calculus, 2005
[8] M.P. Do Carmo Riemannian geometry, Birkhauser, 1992
[9] M. Giaquinta; G. Modica; J. Souček Cartesian currents in the calculus of variations. II, Ergebnisse der Mathematik und ihrer Grenzgebiete., 38, Springer-Verlag, Berlin, 1998, xxiv+697 pages (Variational integrals) | MR | Zbl
[10] Leo Grady Minimal Surfaces Extend Shortest Path Segmentation Methods to 3D, IEEE Trans. Pattern Anal. Mach. Intell., Volume 32 (2010) no. 2, pp. 321-334 | DOI
[11] W. Koiter On the nonlinear theory of thin elastic shells. I, II, III, Nederl. Akad. Wetensch. Proc. Ser. B, Volume 69 (1966), p. 1-17, 18–32, 33–54 | MR
[12] Marius Leordeanu; Martial Hebert A spectral technique for correspondence problems using pairwise constraints, Proc. CVPR, Volume 2 (2005), pp. 1482-1489 | DOI
[13] Y. Lipman; I. Daubechies Surface Comparison with Mass Transportation, 2009
[14] Yaron Lipman; Thomas Funkhouser Mobius Voting for Surface Correspondence, ACM Trans. on Graphics, Volume 28 (2009) no. 3
[15] N. Litke; M. Droske; M. Rumpf; P. Schröder An Image Processing Approach to Surface Matching, Symposium on Geometry Processing (2005), pp. 207-216
[16] Eliane Maria Loiola; Nair Maria Maia de Abreu; Paulo Oswaldo Boaventura-Netto; Peter Hahn; Tania Querido A survey for the quadratic assignment problem, European Journal of Operational Research, Volume 176 (2007) no. 2, pp. 657-690 | DOI | MR | Zbl
[17] F. Mémoli; G. Sapiro A theoretical and computational framework for isometry invariant recognition of point cloud data, Found. Comput. Math., Volume 5 (2005), pp. 313-346 | DOI | MR | Zbl
[18] Facundo Mémoli Gromov-Wasserstein Distances and the Metric Approach to Object Matching, Found. Comput. Math., Volume 11 (2011), pp. 417-487 | DOI | MR | Zbl
[19] M. Meyer; M. Desbrun; P Schröder; A. Barr Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, 2002
[20] Maks Ovsjanikov; Qi-Xing Huang; Leonidas J. Guibas A Condition Number for Non-Rigid Shape Matching, Comput. Graph. Forum (2011), pp. 1503-1512 | DOI
[21] Emanuele Rodolà; Alex Bronstein; Andrea Albarelli; Filippo Bergamasco; Andrea Torsello A game-theoretic approach to deformable shape matching, Proc. CVPR (2012)
[22] Emanuele Rodolà; Tatsuya Harada; Yasuo Kuniyoshi; Daniel Cremers Efficient Shape Matching using Vector Extrapolation, Proc. BMVC (2013)
[23] Emanuele Rodolà; Andrea Torsello; Tatsuya Harada; Yasuo Kuniyoshi; Daniel Cremers Elastic Net Constraints for Shape Matching, Proc. ICCV (2013)
[24] F. R. Schmidt; Dirk Farin; D. Cremers Fast Matching of Planar Shapes in Sub-cubic Runtime, IEEE Int. Conf. on Computer Vision (2007)
[25] T. Schoenemann; F. Kahl; D. Cremers Curvature Regularity for Region-based Image Segmentation and Inpainting: A Linear Programming Relaxation, IEEE Int. Conf. on Computer Vision (2009)
[26] Shai Shalev-Shwartz; Yoram Singer Efficient Learning of Label Ranking by Soft Projections onto Polyhedra, J. Mach. Learn. Res., Volume 7 (2006), pp. 1567-1599 http://dl.acm.org/citation.cfm?id=1248547.1248605 | MR | Zbl
[27] John M. Sullivan A Crystalline Approximation Theorem for Hypersurfaces, Princeton University, October (1990) (Ph. D. Thesis)
[28] Hermant Tagare Shape-based nonrigid correspondence with application to heart motion analysis, IEEE Trans Med Imaging, Volume 18 (1999) no. 7, pp. 570-579 | DOI
[29] Daniel Vlasic; Ilya Baran; Wojciech Matusik; Jovan Popović Articulated mesh animation from multi-view silhouettes, ACM SIGGRAPH 2008 papers (SIGGRAPH ’08) (2008), p. 97:1-97:9 http://doi.acm.org/10.1145/1399504.1360696 | DOI
[30] Thomas Windheuser; Ulrich Schlickewei; Frank R Schmidt; Daniel Cremers Geometrically consistent elastic matching of 3d shapes: A linear programming solution, Computer Vision (ICCV), 2011 IEEE International Conference on (2011), pp. 2134-2141 | DOI
[31] B. Wirth; L. Bar; M. Rumpf; G. Sapiro Geodesics in Shape Space via Variational Time Discretization, EMMCVPR’09 (LNCS), Volume 5681 (2009), pp. 288-302
[32] Yun Zeng; Chaohui Wang; Yang Wang; Xianfeng Gu; Dimitris Samaras; Nikos Paragios Dense non-rigid surface registration using high-order graph matching, Proc. CVPR (2010), pp. 382-389
[33] Hui Zou; Trevor Hastie Regularization and variable selection via the Elastic Net, Journal of the Royal Statistical Society, Series B, Volume 67 (2005), pp. 301-320 | DOI | MR | Zbl
Cited by Sources: