The laplacian operator applied to the coordinates of a manifold provides the mean curvature vector. Manipulating the metric of the manifold or interpreting its coordinates in various ways provide useful tools for shape and image processing and representation. We will review some of these tools focusing on scale invariant geometry, curvature flow with respect to an embedding of the image manifold in a high dimensional space, and object segmentation by active contours defined via the shape laplacian operator. Such generalizations of the curvature vector and its numerical approximation as part of an image flow or triangulated shape representation, demonstrate the omnipresence of this operator and its usefulness in imaging sciences.
@article{ACIRM_2013__3_1_131_0, author = {Yonathan Aflalo and Anastasia Dubrovina and Ron Kimmel and Aaron Wetzler}, title = {Curvature in image and shape processing}, journal = {Actes des rencontres du CIRM}, pages = {131--139}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.62}, zbl = {06938610}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.62/} }
TY - JOUR AU - Yonathan Aflalo AU - Anastasia Dubrovina AU - Ron Kimmel AU - Aaron Wetzler TI - Curvature in image and shape processing JO - Actes des rencontres du CIRM PY - 2013 SP - 131 EP - 139 VL - 3 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.62/ DO - 10.5802/acirm.62 LA - en ID - ACIRM_2013__3_1_131_0 ER -
%0 Journal Article %A Yonathan Aflalo %A Anastasia Dubrovina %A Ron Kimmel %A Aaron Wetzler %T Curvature in image and shape processing %J Actes des rencontres du CIRM %D 2013 %P 131-139 %V 3 %N 1 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.62/ %R 10.5802/acirm.62 %G en %F ACIRM_2013__3_1_131_0
Yonathan Aflalo; Anastasia Dubrovina; Ron Kimmel; Aaron Wetzler. Curvature in image and shape processing. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 131-139. doi : 10.5802/acirm.62. https://acirm.centre-mersenne.org/articles/10.5802/acirm.62/
[1] Yonathan Aflalo; Ron Kimmel Spectral multidimensional scaling, Proceedings of the National Academy of Sciences, Volume 110 (2013) no. 45, pp. 18052-18057 http://www.pnas.org/content/110/45/18052.abstract | DOI | MR | Zbl
[2] Yonathan. Aflalo; Ron Kimmel; Dan Raviv Scale Invariant Geometry for Nonrigid Shapes, SIAM Journal on Imaging Sciences, Volume 6 (2013) no. 3, pp. 1579-1597 http://epubs.siam.org/doi/abs/10.1137/120888107 | DOI | MR | Zbl
[3] Luis Alvarez; Frédéric Guichard; Pierre-Louis Lions; Jean-Michel Morel Axioms and fundamental equations of image processing, Archive for Rational Mechanics and Analysis, Volume 123 (1993) no. 3, pp. 199-257 | DOI | MR | Zbl
[4] M. Belkin; P. Niyogi Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Comput., Volume 15 (2003) no. 6, pp. 1373-1396 | DOI | Zbl
[5] P.J. Besl; N.D. McKay A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 14 (1992) no. 2, pp. 239-256 | DOI
[6] I. Bogdanova; X. Bresson; J. P. Thiran; P. Vandergheynst Scale space analysis and active contours for omnidirectional images, Image Processing, IEEE Transactions on, Volume 16 (2007) no. 7, pp. 1888-1901 | DOI | MR
[7] X. Bresson; P. Vandergheynst; J. P. Thiran Multiscale active contours, Scale Space and PDE Methods in Computer Vision (2005), pp. 167-178 | DOI | Zbl
[8] A. M. Bronstein; M. M. Bronstein; R. Kimmel Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching, Proceedings of the National Academy of Science (2006), pp. 1168-1172 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1360551 | DOI | Zbl
[9] A. M. Bronstein; M. M. Bronstein; R. Kimmel; M. Mahmoudi; G. Sapiro A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching, International Journal of Computer Vision, Volume 89 (2010) no. 2-3, pp. 266-286 | DOI
[10] A.M. Bruckstein; G. Sapiro; D. Shaked Affine-invariant Evolutions of Planar Polygons, CIS report: ham- @Merkāz le-Ma?arākôt Nevônôt, 1992 http://books.google.co.il/books?id=0q2GuAAACAAJ
[11] V. Caselles; R. Kimmel; G. Sapiro Geodesic active contours, International journal of computer vision, Volume 22 (1997) no. 1, pp. 61-79 | DOI | Zbl
[12] Y. Chen; G. Medioni Object modeling by registration of multiple range images, Proceedings of IEEE International Conference on Robotics and Automation, Volume 3 (1991), pp. 2724 -2729
[13] L. D. Cohen; R. Kimmel Global minimum for active contour models: A minimal path approach, International Journal of Computer Vision, Volume 24 (1997) no. 1, pp. 57-78 | DOI
[14] R. R. Coifman; S. Lafon Diffusion maps, Applied and Computational Harmonic Analysis, Volume 21 (2006) no. 1, pp. 5 -30 (Special Issue: Diffusion Maps and Wavelets) | DOI | MR | Zbl
[15] K. Dabov; A. Foi; V. Katkovnik; K. Egiazarian Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing (2007), pp. 2080-2095 | DOI | MR
[16] A. Elad (Elbaz); R. Kimmel On bending invariant signatures for surfaces, IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Volume 25 (2003) no. 10, pp. 1285-1295 | DOI
[17] M. Hilaga; Y. Shinagawa; T. Kohmura; T.L. Kunii Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes, ACM SIGGRAPH 2001 (2001)
[18] Z. Karni; C. Gotsman Spectral compression of mesh geometry, Proceedings of the 27th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’00) (2000), pp. 279-286 | DOI
[19] B. Levy Laplace-Beltrami Eigenfunctions Towards an Algorithm That “Understands” Geometry, Conference on Shape Modeling and Applications, 2006. SMI 2006. IEEE International (2006), p. 13-13 | DOI
[20] F. Mémoli; G. Sapiro A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data, Foundations of Computational Mathematics, Volume 5 (2005) no. 3, pp. 313-347 | DOI | MR | Zbl
[21] R. Osada; T. Funkhouser; B. Chazelle; D. Dobkin Shape Distributions, ACM Transactions on Graphics, Volume 21 (2002) no. 4, pp. 807-832 | DOI | Zbl
[22] S. Osher; J. A. Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of computational physics, Volume 79 (1988) no. 1, pp. 12-49 | DOI | MR | Zbl
[23] D. Raviv; A. M. Bronstein; M. M. Bronstein; R. Kimmel; N. Sochen Affine-invariant geodesic geometry of deformable 3D shapes, Computers & Graphics, Volume 35 (2011) no. 3, pp. 692-697 | DOI
[24] A. Roussos; P. Maragos Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals, ICIP (2010)
[25] Leonid I. Rudin; Stanley Osher; Emad Fatemi Nonlinear Total Variation Based Noise Removal Algorithms, Phys. D, Volume 60 (1992) no. 1-4, pp. 259-268 | DOI | MR | Zbl
[26] N. Sochen; R. Kimmel; A. M. Bruckstein Diffusions and confusions in signal and image processing, Journal of Mathematical Imaging and Vision, Volume 14 (2001) no. 3, pp. 195-209 | DOI | MR | Zbl
[27] N. Sochen; R. Kimmel; A.M. Bruckstein Diffusions and Confusions in Signal and Image Processing, Journal of Mathematical Imaging and Vision, Volume 14 (2001) no. 3, pp. 195-209 | DOI | MR | Zbl
[28] N. Sochen; R. Kimmel; R. Malladi A general framework for low level vision, IEEE Trans. on Image Processing (1998), pp. 310-318 | DOI | MR | Zbl
[29] Nir A. Sochen Stochastic Processes in Vision: From Langevin to Beltrami, Computer Vision, IEEE International Conference on, Volume 1 (2001), 288 pages
[30] C. Tomasi; R. Manduchi Bilateral filtering for gray and color images, Proc. IEEE ICCV (1998), pp. 836-846
[31] C. Tomasi; R. Manduchi Bilateral Filtering for Gray and Color Images, Proceedings of the Sixth International Conference on Computer Vision (ICCV ’98) (1998), 839– pages http://dl.acm.org/citation.cfm?id=938978.939190
[32] A. Wetzler; R. Kimmel Efficient Beltrami Flow in Patch-Space, Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision 2011, Volume 6667 (2011), pp. 134-143
Cited by Sources: