This text gives a short overview of the recent works on Gorenstein global dimension of rings.
@article{ACIRM_2010__2_2_115_0, author = {Driss Bennis}, title = {A short survey on {Gorenstein} global dimension}, journal = {Actes des rencontres du CIRM}, pages = {115--117}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.46}, zbl = {06938594}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.46/} }
Driss Bennis. A short survey on Gorenstein global dimension. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 115-117. doi : 10.5802/acirm.46. https://acirm.centre-mersenne.org/articles/10.5802/acirm.46/
[1] D. Bennis, -Strongly Gorenstein projective modules, Int. Electron. J. Algebra 6 (2009), 119–133. | Zbl
[2] D. Bennis, -SG rings, AJSE-Mathematics 35 (2010), 169–178. | Zbl
[3] D. Bennis, A note on Gorenstein global dimension of pullback rings, Int. Electron. J. Algebra 8 (2010), 30–44. | Zbl
[4] D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), 437–445. | DOI | MR | Zbl
[5] D. Bennis and N. Mahdou, Gorenstein Global dimensions and cotorsion dimension of rings, Comm. Algebra 37 (2009), 1709–1718. | DOI | MR | Zbl
[6] D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), 219–227. | DOI | MR | Zbl
[7] D. Bennis and N. Mahdou, Global Gorenstein dimensions of polynomial rings and of direct products of rings, Houston J. Math. 35 (2009), 1019–1028. | Zbl
[8] D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), 461–465. | DOI | MR | Zbl
[9] D. Bennis, N. Mahdou and K. Ouarghi, Rings over which all modules are strongly Gorenstein projective, Rocky Mountain J. Math. 40 (2010), 749–759. | DOI | MR | Zbl
[10] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., Springer-Verlag, Berlin (2000). | DOI | Zbl
[11] L. W. Christensen, H-B. Foxby and H. Holm, Beyond Totally Reflexive Modules and Back. A Survey on Gorenstein Dimensions, Commutative Algebra: Noetherian and non-Noetherian perspectives, Springer-Verlag, (2011) 101–143. | DOI | Zbl
[12] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter, Berlin (2000). | DOI | Zbl
[13] H. Haghighi, M. Tousi and S. Yassemi, Tensor products of algebra, Commutative Algebra: Noetherian and non-Noetherian perspectives, springer-Verlag, (2011) 181–202. | DOI | Zbl
[14] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167–193. | DOI | MR | Zbl
[15] E. Kirkman and J. Kuzmanovich, On the global dimension of fibre products, Pacific J. Math., 134 (1988), 121–132. | DOI | MR | Zbl
[16] N. Mahdou and K. Ouarghi, Gorenstein dimensions in trivial ring extensions, Commutative Algebra and Applications, W. de Gruyter, Berlin, (2009) 291–300. | DOI | Zbl
[17] N. Mahdou and M. Tamekkante, Note on (weak) Gorenstein global dimensions, (perprint) Available from arXiv:0910.5752v1. | Zbl
Cited by Sources: