Mersenne banner

Actes des rencontres du CIRM

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 2 (2010)
  • no. 2
  • p. 111-114
  • Next
no. 2
Some applications of the ultrafilter topology on spaces of valuation domains, Part II
Carmelo Antonio Finocchiaro1; Marco Fontana2
1 C.A.F. - Dipartimento di Matematica Università degli studi Roma Tre Largo San Leonardo Murialdo 1, 00146 Roma, Italy
2 M.F. - Dipartimento di Matematica Università degli studi Roma Tre Largo San Leonardo Murialdo 1, 00146 Roma, Italy
Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 111-114.
  • Abstract

Let K be a field and A be a subring of K. In the present note, we present the main applications of the so called ultrafilter topology on the space Zar (K|A), introduced in the previous Part I. After recalling that Zar (K|A) is a spectral space, we give an explicit description of Zar (K|A) as the prime spectrum of a ring (even in the case when the quotient field of A is a proper subfield of K). Moreover, we provide applications of the topological material previously introduced to the study of representations of integrally closed domains and valuative semistar operations.

  • Article information
  • Export
  • How to cite
Published online: 2011-10-19
Zbl: 1439.13014
DOI: 10.5802/acirm.45
Keywords: Valuation domain, (semi)star operation, prime spectrum, Zariski topology, constructible topology, filter and ultrafilter, Prüfer domain.
Author's affiliations:
Carmelo Antonio Finocchiaro 1; Marco Fontana 2

1 C.A.F. - Dipartimento di Matematica Università degli studi Roma Tre Largo San Leonardo Murialdo 1, 00146 Roma, Italy
2 M.F. - Dipartimento di Matematica Università degli studi Roma Tre Largo San Leonardo Murialdo 1, 00146 Roma, Italy
  • BibTeX
  • RIS
  • EndNote
@article{ACIRM_2010__2_2_111_0,
     author = {Carmelo Antonio Finocchiaro and Marco Fontana},
     title = {Some applications of the ultrafilter topology on spaces of valuation domains, {Part} {II}},
     journal = {Actes des rencontres du CIRM},
     pages = {111--114},
     publisher = {CIRM},
     volume = {2},
     number = {2},
     year = {2010},
     doi = {10.5802/acirm.45},
     zbl = {1439.13014},
     language = {en},
     url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.45/}
}
TY  - JOUR
AU  - Carmelo Antonio Finocchiaro
AU  - Marco Fontana
TI  - Some applications of the ultrafilter topology on spaces of valuation domains, Part II
JO  - Actes des rencontres du CIRM
PY  - 2010
SP  - 111
EP  - 114
VL  - 2
IS  - 2
PB  - CIRM
UR  - https://acirm.centre-mersenne.org/articles/10.5802/acirm.45/
UR  - https://zbmath.org/?q=an%3A1439.13014
UR  - https://doi.org/10.5802/acirm.45
DO  - 10.5802/acirm.45
LA  - en
ID  - ACIRM_2010__2_2_111_0
ER  - 
%0 Journal Article
%A Carmelo Antonio Finocchiaro
%A Marco Fontana
%T Some applications of the ultrafilter topology on spaces of valuation domains, Part II
%J Actes des rencontres du CIRM
%D 2010
%P 111-114
%V 2
%N 2
%I CIRM
%U https://doi.org/10.5802/acirm.45
%R 10.5802/acirm.45
%G en
%F ACIRM_2010__2_2_111_0
Carmelo Antonio Finocchiaro; Marco Fontana. Some applications of the ultrafilter topology on spaces of valuation domains, Part II. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 111-114. doi : 10.5802/acirm.45. https://acirm.centre-mersenne.org/articles/10.5802/acirm.45/
  • References
  • Cited by

[1] A. Fabbri, Integral domains with a unique Kronecker function ring, J. Pure Appl. Algebra 215 (2011), 1069-1084. | DOI | MR | Zbl

[2] C. A. Finocchiaro, M. Fontana, Some applications of the ultrafilter topology on spaces of valuation domains, Part I, this volume. | DOI

[3] C. A. Finocchiaro, M. Fontana, K. A. Loper, Ultrafilter and constructible topologies on spaces of valuation domains, submitted. | DOI | MR | Zbl

[4] M. Fontana, K. A. Loper, Cancellation properties in ideal systems: a classification of e.a.b. semistar operations, J. Pure Appl. Algebra 213 (2009), no. 11, 2095–2103. | DOI | MR | Zbl

[5] F. Halter–Koch, Kronecker function rings and generalized integral closures, Comm. Algebra 31 (2003), 45-49. | DOI | MR | Zbl

[6] Melvin Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. | DOI | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2105-0597