In the present note we introduce the basic definitions and the main results concerning the spaces of valuation domains needed in the subsequent Part II.
@article{ACIRM_2010__2_2_107_0, author = {Carmelo Antonio Finocchiaro and Marco Fontana}, title = {Some applications of the ultrafilter topology on spaces of valuation domains, {Part} {I}}, journal = {Actes des rencontres du CIRM}, pages = {107--109}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.44}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.44/} }
TY - JOUR AU - Carmelo Antonio Finocchiaro AU - Marco Fontana TI - Some applications of the ultrafilter topology on spaces of valuation domains, Part I JO - Actes des rencontres du CIRM PY - 2010 SP - 107 EP - 109 VL - 2 IS - 2 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.44/ DO - 10.5802/acirm.44 LA - en ID - ACIRM_2010__2_2_107_0 ER -
%0 Journal Article %A Carmelo Antonio Finocchiaro %A Marco Fontana %T Some applications of the ultrafilter topology on spaces of valuation domains, Part I %J Actes des rencontres du CIRM %D 2010 %P 107-109 %V 2 %N 2 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.44/ %R 10.5802/acirm.44 %G en %F ACIRM_2010__2_2_107_0
Carmelo Antonio Finocchiaro; Marco Fontana. Some applications of the ultrafilter topology on spaces of valuation domains, Part I. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 107-109. doi : 10.5802/acirm.44. https://acirm.centre-mersenne.org/articles/10.5802/acirm.44/
[1] Paul-Jean Cahen, Alan Loper, and Francesca Tartarone, Integer-valued polynomials and Prüfer multiplication domains, J. Algebra 226 (2000), 765–787. | DOI | Zbl
[2] Claude Chevalley et Henri Cartan, Schémas normaux; morphismes; ensembles constructibles, Séminaire Henri Cartan 8 (1955-1956), Exp. No. 7, 1–10.
[3] M. Fontana, K. A. Loper, Cancellation properties in ideal systems: a classification of e.a.b. semistar operations, J. Pure Appl. Algebra 213 (2009), no. 11, 2095–2103. | DOI | MR | Zbl
[4] Marco Fontana and K. Alan Loper, The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring, Comm. Algebra 36 (2008), 2917–2922. | DOI | MR | Zbl
[5] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York 1972. | Zbl
[6] R. Gilmer and W. Heinzer, Irredundant intersections of valuation rings, Math. Z. 103 (1968), 306–317. | DOI | MR | Zbl
[7] Alexander Grothendieck et Jean Dieudonné, Éléments de Géométrie Algébrique I, IHES 1960; Springer, Berlin, 1970. | DOI | Numdam | Zbl
[8] Melvin Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. | DOI | MR | Zbl
[9] Roland Huber, Bewertungsspektrum und rigide Geometrie, Regensburger Mathematische Schriften, vol. 23, Universität Regensburg, Fachbereich Mathematik, Regensburg, 1993.
[10] Roland Huber and Manfred Knebusch, On valuation spectra, in “Recent advances in real algebraic geometry and quadratic forms: proceedings of the RAGSQUAD year”, Berkeley, 1990-1991, Contemp. Math. 155, Amer. Math. Soc., Providence, RI, 1994. | DOI | MR
[11] K. Alan Loper, Sequence domains and integer-valued polynomials, J. Pure Appl. Algebra 119 (1997), 185–210. | DOI | MR | Zbl
[12] K. Alan Loper, A classification of all such that Int() is a Prüfer domain, Proc. Amer. Math. Soc. 126 (1998), 657–660. | DOI | Zbl
[13] Niels Schwartz, Compactification of varieties, Ark. Mat. 28 (1990), 333–370. | DOI | MR | Zbl
[14] Niels Schwartz and Marcus Tressl, Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra 323 (2010), 698–728. | DOI | MR | Zbl
[15] John Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257–269. | DOI | MR | Zbl
[16] O. Zariski, The compactness of the Riemann manifold of an abstract field of algebraic functions, Bull. Amer. Math. Soc 50 (1944), 683–691. | DOI | MR | Zbl
[17] O. Zariski, P. Samuel, Commutative Algebra, Volume 2, Springer Verlag, Graduate Texts in Mathematics 29, New York, 1975 (First Edition, Van Nostrand, Princeton, 1960). | DOI
Cited by Sources: