Mersenne banner

Actes des rencontres du CIRM

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 2 (2010)
  • no. 2
  • p. 103-105
  • Next
no. 2
Towards a more precise understanding of sets of lengths
Wolfgang A. Schmid1
1 CMLS, École polytechnique, 91128 Palaiseau cedex, France
Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 103-105.
  • Abstract

This short survey, based on the content of a talk with the same title, summarizes some classical and recent results on the set of differences of an abelian group. We put a certain emphasize on ongoing joint work of A. Plagne and the author. We also briefly review the relevance of this notion in Non-unique Factorization Theory, in particular towards the subject mentioned in the title.

  • Article information
  • Export
  • How to cite
Published online: 2011-10-19
Zbl: 06938591
DOI: 10.5802/acirm.43
Keywords: Dedekind domain, factorization, Krull monoid, set of differences, set of lengths, zero-sum sequence
Author's affiliations:
Wolfgang A. Schmid 1

1 CMLS, École polytechnique, 91128 Palaiseau cedex, France
  • BibTeX
  • RIS
  • EndNote
@article{ACIRM_2010__2_2_103_0,
     author = {Wolfgang A. Schmid},
     title = {Towards a more precise understanding of sets of lengths},
     journal = {Actes des rencontres du CIRM},
     pages = {103--105},
     publisher = {CIRM},
     volume = {2},
     number = {2},
     year = {2010},
     doi = {10.5802/acirm.43},
     zbl = {06938591},
     language = {en},
     url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.43/}
}
TY  - JOUR
AU  - Wolfgang A. Schmid
TI  - Towards a more precise understanding of sets of lengths
JO  - Actes des rencontres du CIRM
PY  - 2010
SP  - 103
EP  - 105
VL  - 2
IS  - 2
PB  - CIRM
UR  - https://acirm.centre-mersenne.org/articles/10.5802/acirm.43/
UR  - https://zbmath.org/?q=an%3A06938591
UR  - https://doi.org/10.5802/acirm.43
DO  - 10.5802/acirm.43
LA  - en
ID  - ACIRM_2010__2_2_103_0
ER  - 
%0 Journal Article
%A Wolfgang A. Schmid
%T Towards a more precise understanding of sets of lengths
%J Actes des rencontres du CIRM
%D 2010
%P 103-105
%V 2
%N 2
%I CIRM
%U https://doi.org/10.5802/acirm.43
%R 10.5802/acirm.43
%G en
%F ACIRM_2010__2_2_103_0
Wolfgang A. Schmid. Towards a more precise understanding of sets of lengths. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 103-105. doi : 10.5802/acirm.43. https://acirm.centre-mersenne.org/articles/10.5802/acirm.43/
  • References
  • Cited by

[1] L. Carlitz. A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc., 11:391–392, 1960. | DOI | MR | Zbl

[2] S. Chang, S. T. Chapman, and W. W. Smith. On minimum delta set values in block monoids over cyclic groups. Ramanujan J., 14(1):155–171, 2007. | DOI | MR | Zbl

[3] S. T. Chapman and W. W. Smith. Factorization in Dedekind domains with finite class group. Israel J. Math., 71(1):65–95, 1990. | DOI | MR | Zbl

[4] S. T. Chapman, W. A. Schmid, and W. W. Smith. On minimum distances in Krull monoids with infinite class group. Bull. Lond. Math. Soc., 40(4):613–618, 2008. | DOI | MR | Zbl

[5] G. Freiman and A. Geroldinger. An addition theorem and its arithmetical application. J. Number Theory, 85(1):59–73, 2000. | DOI | MR | Zbl

[6] W. Gao and A. Geroldinger. Systems of sets of lengths. II. Abh. Math. Sem. Univ. Hamburg, 70:31–49, 2000. | DOI | MR | Zbl

[7] A. Geroldinger. Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z., 197(4):505–529, 1988. | DOI | Zbl

[8] A. Geroldinger and F. Halter-Koch. Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory. Chapman & Hall/CRC, 2006. | DOI | Zbl

[9] A. Geroldinger and Y. ould Hamidoune. Zero-sumfree sequences in cyclic groups and some arithmetical application. J. Théor. Nombres Bordeaux, 14(1):221–239, 2002. | DOI | MR | Zbl

[10] A. Plagne and W. A. Schmid. On congruence half-factorial Dedekind domains with cyclic class group. Manuscript in progress. | DOI | MR | Zbl

[11] W. A. Schmid. Arithmetical characterization of class groups of the form ℤ/nℤ⊕ℤ/nℤ via the system of sets of lengths. Abh. Math. Sem. Hamburg, 79:25–35, 2009. | DOI | MR

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2105-0597