We illustrate some results relating the finite character property, the local stability property and the local invertibility property of a domain and give a partial answer to two open questions.
@article{ACIRM_2010__2_2_119_0, author = {Stefania Gabelli}, title = {Finite character, local stability property and local invertibility property}, journal = {Actes des rencontres du CIRM}, pages = {119--122}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.47}, zbl = {06938595}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.47/} }
TY - JOUR AU - Stefania Gabelli TI - Finite character, local stability property and local invertibility property JO - Actes des rencontres du CIRM PY - 2010 SP - 119 EP - 122 VL - 2 IS - 2 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.47/ DO - 10.5802/acirm.47 LA - en ID - ACIRM_2010__2_2_119_0 ER -
%0 Journal Article %A Stefania Gabelli %T Finite character, local stability property and local invertibility property %J Actes des rencontres du CIRM %D 2010 %P 119-122 %V 2 %N 2 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.47/ %R 10.5802/acirm.47 %G en %F ACIRM_2010__2_2_119_0
Stefania Gabelli. Finite character, local stability property and local invertibility property. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 119-122. doi : 10.5802/acirm.47. https://acirm.centre-mersenne.org/articles/10.5802/acirm.47/
[1] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra 184 (1996), 613–631. | DOI | Zbl
[2] S. Bazzoni, Groups in the class semigroups of Prüfer domains of finite character, Comm. Algebra 28 (2000), 5157–5167. | DOI | Zbl
[3] S. Bazzoni, Clifford regular domains, J. Algebra 238 (2001), 703–722. | DOI | MR | Zbl
[4] S. Bazzoni, Finite character of finitely stable domains, J. Pure Appl. Algebra 215 (2011), 1127–1132. | DOI | MR | Zbl
[5] S. Bazzoni and L. Salce, Groups in the class semigroups of valuation domains, Israel J. Math. 95 (1996), 135–155. | DOI | MR | Zbl
[6] T. Dumitrescu and M. Zafrullah, Characterizing domains of finite -character, J. Pure Appl. Algebra 214 (2010), 2087–2091 | DOI | Zbl
[7] C.A. Finocchiaro, G. Picozza and F. Tartarone Star-Invertibility and -finite character in Integral Domains, J. Algebra Appl., to appear. | DOI | MR | Zbl
[8] S. Gabelli and G. Picozza, Star-stable domains, J. Pure Appl. Algebra 208 (2007), 853–866. | DOI | MR | Zbl
[9] S. Gabelli and G. Picozza Stability and regularity with respect to star operations, Comm. Algebra, to appear. | DOI | MR | Zbl
[10] S. Gabelli and G. Picozza, Star stability and star regularity for Mori domains, Rend. Semin. Mat. Univ. Padova, to appear. | DOI | Numdam | MR | Zbl
[11] W.C. Holland, J. Martinez, W.Wm. McGovern and M.Tesemma, Bazzoni’s Conjecture, J. Algebra 320 (2008), 1764–1768. | DOI | MR
[12] W. Wm. McGovern, Prüfer domains with Clifford Class semigroup, J. Comm. Alg., to appear. | DOI | Zbl
[13] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra 205 (1998), 480–504. | DOI | Zbl
[14] B. Olberding, Stability, duality and -generated ideals, and a canonical decomposition of modules, Rend. Semin. Mat. Univ. Padova 106 (2001), 261–290. | Numdam | Zbl
[15] B. Olberding, On the classification of stable domains, J. Algebra 243 (2001), 177–197. | DOI | MR | Zbl
[16] B. Olberding, On the structure of stable domains, Comm. Algebra 30 (2002), 877–895. | DOI | MR | Zbl
[17] D. Rush, Two-generated ideals and representations of abelian groups over valuation rings, J. Algebra 177 (1995), 77–101. | DOI | MR | Zbl
[18] M. Zafrullah, -Invertibility and Bazzoni-like statements, J. Pure Appl. Algebra 214 (2010), 654–657. | DOI | Zbl
[19] P. Zanardo, The class semigroup of local one-dimensional domains, J. Pure Appl. Algebra 212 (2008), 2259–2270. | DOI | MR | Zbl
[20] P. Zanardo and U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc. 115 (1994), 379–391. | DOI | MR | Zbl
Cited by Sources: