We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.
@article{ACIRM_2013__3_1_183_0, author = {Atsushi Imiya}, title = {Curvature and {Flow} in {Digital} {Space}}, journal = {Actes des rencontres du CIRM}, pages = {183--194}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.67}, zbl = {06938615}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.67/} }
Atsushi Imiya. Curvature and Flow in Digital Space. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 183-194. doi : 10.5802/acirm.67. https://acirm.centre-mersenne.org/articles/10.5802/acirm.67/
[1] Marshall Bern; David Eppstein Mesh generation and optimal triangulation, Computing in Euclidean Geometry, 2nd Edition (1995), pp. 47-123 | DOI
[2] Hanspeter Bieri; Walter Nef A recursive sweep-plane algorithm, determining all cells of a finite division of , Computing, Volume 28 (1982), pp. 189-198 | DOI | MR | Zbl
[3] Hanspeter Bieri; Walter Nef A sweep-plane algorithm for computing the volume of polyhedra represented in Boolean form, Linear Algebra and Its Applications, Volume 52/53 (1983), pp. 69-97 | DOI | MR | Zbl
[4] Hanspeter Bieri; Walter Nef Algorithms for the Euler characteristic and related additive functionals of digital objects, CVGIP, Volume 28 (1984), pp. 166-175 | Zbl
[5] Hanspeter Bieri; Walter Nef A sweep-plane algorithm for computing the Euler-characteristic of polyhedra represented in Boolean form, Computing, Volume 34 (1985), pp. 287-304 | DOI | MR | Zbl
[6] Alexander I. Bobenko; Yuri B. Suris Discrete Differential Geometry: Integrable Structure, American Mathematical Society, 2008 | Zbl
[7] Alfred M. Bruckstein; Guillermo Shapiro; Doron Shaked Evolution of planar polygons, J. Pattern Recognition and Artificial Intelligence, Volume 9 (1995), pp. 991-1014 | DOI
[8] Bastien Chopard; Michel Droz Cellular Automata Modeling of Physical Systems, Cambridge University Press, Cambridge, 1998 | Zbl
[9] Nira Dyn; David Levinand; Samuel Rippa Data dependent triangulations for piecewise linear interpolation, IMA J. Numerical Analysis, Volume 10 (1990), pp. 137-154 | MR | Zbl
[10] Gerhard Huisken Flow by mean curvature of convex surface into sphere, J. Differential Geometry, Volume 20 (1984), pp. 237-266 | MR | Zbl
[11] Atsushi Imiya Geometry of three-dimensional neighbourhood and its applications (in Japanese), Trans. of Information Processing Society of Japan, Volume 34 (1993), pp. 2153-2164
[12] Yukiko Kenmochi; Atsushi Imiya Deformation of discrete object surfaces, Lecture Notes in Computer Science, Volume 1296 (1997), pp. 146-153 | DOI
[13] Ron Kimmel Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer, Heidelberg, 2007 | Zbl
[14] Reinhard Klette; Azriel Rosenfeld Digital Geometry: Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, 2004 | Zbl
[15] C.-N Lee; T. Poston; Azriel Rosenfeld Holes and genus of 2D and 3D digital images, CVGIP, Volume 55 (1993), pp. 20-47
[16] Douglas Lind; Brian Marcus An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995 | Zbl
[17] Tony Lindeberg Scale-Space Theory, Kluwer Academic Publishers, Dordrecht, 1994
[18] Tony Lindeberg Generalized Axiomatic Scale-Space Theory, Advances in Imaging and Electron Physics, Volume 178 (2013), pp. 1-96 | DOI
[19] Atsuyuki Okabe; Barry Boots; Kokichi Sugihara Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley& Sons, Chichester, 1992 | Zbl
[20] Samuel Rippa Minimal roughness property of the Delaunay triangulation, Computer Aided Geometric Design, Volume 7 (1990), pp. 489-497 | DOI | MR | Zbl
[21] Tomoya Sakai; Masaki Narita; Takuto Komazaki; Haruhiko Nishiguchi; Atsushi Imiya Image Hierarchy in Gaussian Scale Space, Advances in Imaging and Electron Physics, Volume 165 (2011), pp. 175-263 | DOI
[22] Guillermo Sapiro Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, 2001 | Zbl
[23] James A. Sethian Level Set Methods: Evolving Interfaces in Geometry Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press, Cambridge, 1996 | Zbl
[24] Junichiro Toriwaki Digital Image Processing for Image Understanding, Vols.1 and 2 (in Japanese), Syokodo, Tokyo, 1988
[25] Junichiro Toriwaki; Sigeki Yokoi; T. Yonekura; T. Fukumura Topological properties and topological preserving transformation of a three-dimensional binary picture, Proc. of the 6th ICPR (1982), pp. 414-419
[26] Junichiro Toriwaki; Hiroyuki Yoshida Fundamentals of Three-dimensional Digital Image Processing, Springer, Heidelberg, 2009 | Zbl
[27] Andrea Toselli; Olof Widlund Domain Decomposition Methods - Algorithms and Theory, Springer, Heidelberg, 2005 | Zbl
[28] Richard S. Varge Matrix Iterative Analysis, 2nd rev. and exp. ed., Springer, Heidelberg, 2000
[29] Joachim Weickert Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-Verlag, Stuttgart, 1998 | Zbl
[30] Stephan Wolfram A New Kind of Science, Wolfram Media, Champaign, 2002 | Zbl
[31] T. Yonekura; Junichiro Toriwaki; T. Fukumura; Sigeki Yokoi On connectivity and the Euler number of three-dimensional digitized binary picture, Trans. of IECE Japan, Volume E63 (1980), pp. 815-816
Cited by Sources: