Curvature is a continuous and infinitesimal notion. These properties induce geometrical difficulties in digital frameworks, and the following question is naturally asked: “How to define and compute curvatures of digital shapes?” In fact, not only geometrical but also topological difficulties are also induced in digital frameworks. The – deeper – question thus arises: “Can we still define and compute curvatures?” This latter question, that is relevant in the context of digitization, i.e., when passing from to , can also be stated in itself, when applying geometric transformations on digital shapes. This paper proposes a preliminary discussion on this topic.
@article{ACIRM_2013__3_1_195_0, author = {Yukiko Kenmochi and Phuc Ngo and Nicolas Passat and Hugues Talbot}, title = {Digital shapes, digital boundaries and rigid transformations: {A} topological discussion}, journal = {Actes des rencontres du CIRM}, pages = {195--201}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.68}, zbl = {06938616}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.68/} }
TY - JOUR AU - Yukiko Kenmochi AU - Phuc Ngo AU - Nicolas Passat AU - Hugues Talbot TI - Digital shapes, digital boundaries and rigid transformations: A topological discussion JO - Actes des rencontres du CIRM PY - 2013 SP - 195 EP - 201 VL - 3 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.68/ DO - 10.5802/acirm.68 LA - en ID - ACIRM_2013__3_1_195_0 ER -
%0 Journal Article %A Yukiko Kenmochi %A Phuc Ngo %A Nicolas Passat %A Hugues Talbot %T Digital shapes, digital boundaries and rigid transformations: A topological discussion %J Actes des rencontres du CIRM %D 2013 %P 195-201 %V 3 %N 1 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.68/ %R 10.5802/acirm.68 %G en %F ACIRM_2013__3_1_195_0
Yukiko Kenmochi; Phuc Ngo; Nicolas Passat; Hugues Talbot. Digital shapes, digital boundaries and rigid transformations: A topological discussion. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 195-201. doi : 10.5802/acirm.68. https://acirm.centre-mersenne.org/articles/10.5802/acirm.68/
[1] A. Gross; L. Latecki Digitizations preserving topological and differential geometric properties, Computer Vision and Image Understanding, Volume 62 (1995) no. 3, pp. 370-381 | DOI
[2] R. Klette; A. Rosenfeld Digital Geometry: Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, 2004 | Zbl
[3] T. Y. Kong; A. Rosenfeld Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, Volume 48 (1989) no. 3, pp. 357-393 | DOI
[4] L. J. Latecki; C. Conrad; A. D. Gross Preserving topology by a digitization process, Journal of Mathematical Imaging and Vision, Volume 8 (1998) no. 2, pp. 131-159 | DOI | MR | Zbl
[5] L. J. Latecki; U. Eckhardt; A. Rosenfeld Well-composed sets, Computer Vision and Image Understanding, Volume 61 (1995) no. 1, pp. 70-83 | DOI
[6] Mathematical Morphology: From Theory to Applications (L. Najman; H. Talbot, eds.), ISTE/J. Wiley & Sons, 2010 | Zbl
[7] P. Ngo; N. Passat; Y. Kenmochi; H. Talbot Well-composed images and rigid transformations, ICIP 2013, 20th International Conference on Image Processing, Proceedings (2013), pp. 3035-3039 | DOI
[8] P. Ngo; N. Passat; Y. Kenmochi; H. Talbot Topology-preserving rigid transformation of 2D digital images, IEEE Transactions on Image Processing, Volume 23 (2014) no. 2, pp. 885-897 | DOI | MR | Zbl
[9] T. Pavlidis Algorithms for Graphics and Image Processing, Springer-Verlag, 1982 | DOI | MR | Zbl
Cited by Sources: