Decimal expansions of classical constants such as , and have long been a source of difficult questions. In the case of finite characteristic numbers (Laurent series with coefficients in a finite field), where no carry-over difficulties appear, the situation seems to be simplified and drastically different. On the other hand, the theory of Drinfeld modules provides analogs of real numbers such as , or values. Hence, it became reasonable to enquire how “complex” the Laurent representation of these “numbers” is.
@article{ACIRM_2009__1_1_29_0, author = {Alina Firicel}, title = {Subword complexity and finite characteristic numbers}, journal = {Actes des rencontres du CIRM}, pages = {29--34}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2009}, doi = {10.5802/acirm.6}, zbl = {06938554}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.6/} }
Alina Firicel. Subword complexity and finite characteristic numbers. Actes des rencontres du CIRM, Volume 1 (2009) no. 1, pp. 29-34. doi : 10.5802/acirm.6. https://acirm.centre-mersenne.org/articles/10.5802/acirm.6/
[1] B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Annals of Mathematics 165 (2007), 547–565. | DOI | MR | Zbl
[2] B. Adamczewski & Y. Bugeaud & F. Luca, Sur la complexité des nombres algébriques. C. R. Math. Acad. Sci. Paris, 339(2004), 11-14. | DOI | Zbl
[3] J.-P. Allouche, Sur la transcendance de la série formelle , Journal de Théorie des Nombres de Bordeaux 2 (1990), 103–117. | DOI | Zbl
[4] J.-P. Allouche & J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. | DOI
[5] David H. Bailey, Peter B. Borwein and Simon Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, vol. 66, no. 218 (1997), pg. 903?-913. | DOI | MR | Zbl
[6] R.M. Beals & D.S. Thakur, Computational classification of numbers and algebraic properties, Internat. Math. Res. Notices, 15 (1998), 799–818. | DOI | Zbl
[7] J. Berstel and P. Séébold , Algebraic combinatorics on Words, chapter Sturmian words, Cambridge University Press (2002).
[8] V. Berthé, Automates et valeurs de transcendance du logarithme de Carlitz Acta Arithmetica LXVI.4 (1994), 369–390. | DOI | MR | Zbl
[9] V. Berthé, Combinaisons linéaires de sur , pour J. Number Theory 53 (1995), 272–299. | DOI | Zbl
[10] V. Berthé, De nouvelles preuves preuves “automatiques” de transcendance pour la fonction zeta de Carlitz Journées Arithmétiques de Genève, Astérisque 209 (1992), 159–168 . | Zbl
[11] V. Berthé, Fonction zeta de Carlitz et automates, Journal de Théorie des Nombres de Bordeaux 5 (1993), 53–77. | DOI | MR | Zbl
[12] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J., 1 (1935), 137–168. | DOI | MR | Zbl
[13] D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. (1933), 8, 254?-260. | DOI | MR | Zbl
[14] H. Cherif, B. de Mathan, Irrationality measures of Carlitz zeta values in characteristic , J. Number Theory 44 (1993), 260–272. | DOI | MR | Zbl
[15] Christol, G.; Kamae, T.; Mendès France, Michel; Rauzy, Gérard, Suites algébriques, automates et substitutions, Bulletin de la Société Mathématique de France, 108 (1980), 401–419. | DOI | Zbl
[16] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192. | DOI | MR | Zbl
[17] A. Firicel, Subword Complexity and Laurent series over finite fields, in progress.
[18] D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, Berlin, 1996. | DOI | Zbl
[19] M. Morse & G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866. | DOI | MR | Zbl
[20] D.S. Thakur, Function Field Arithmetic, World Scientfic, Singapore, 2004. | DOI | Zbl
[21] L.J. Wade, Certain quantities transcendental over , Duke Math. J. 8 (1941), 701–720. | DOI | Zbl
[22] J. Yu, Transcendence and Special Zeta Values in Characteristic , Annals of Math. 134 (1991), 1–23. | DOI | MR | Zbl
Cited by Sources: