An infinite word is -automatic if, for all , its st letter is the output of a deterministic automaton fed with the representation of in the considered numeration system . In this extended abstract, we consider an analogous definition in a multidimensional setting and present the connection to the shape-symmetric infinite words introduced by Arnaud Maes. More precisely, for , we state that a multidimensional infinite word over a finite alphabet is -automatic for some abstract numeration system built on a regular language containing the empty word if and only if is the image by a coding of a shape-symmetric infinite word.
@article{ACIRM_2009__1_1_23_0, author = {Emilie Charlier and Tomi K\"arki and Michel Rigo}, title = {A {Characterization} of {Multidimensional} $S${-Automatic} {Sequences}}, journal = {Actes des rencontres du CIRM}, pages = {23--28}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2009}, doi = {10.5802/acirm.5}, zbl = {06938553}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.5/} }
TY - JOUR AU - Emilie Charlier AU - Tomi Kärki AU - Michel Rigo TI - A Characterization of Multidimensional $S$-Automatic Sequences JO - Actes des rencontres du CIRM PY - 2009 SP - 23 EP - 28 VL - 1 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.5/ DO - 10.5802/acirm.5 LA - en ID - ACIRM_2009__1_1_23_0 ER -
%0 Journal Article %A Emilie Charlier %A Tomi Kärki %A Michel Rigo %T A Characterization of Multidimensional $S$-Automatic Sequences %J Actes des rencontres du CIRM %D 2009 %P 23-28 %V 1 %N 1 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.5/ %R 10.5802/acirm.5 %G en %F ACIRM_2009__1_1_23_0
Emilie Charlier; Tomi Kärki; Michel Rigo. A Characterization of Multidimensional $S$-Automatic Sequences. Actes des rencontres du CIRM, Volume 1 (2009) no. 1, pp. 23-28. doi : 10.5802/acirm.5. https://acirm.centre-mersenne.org/articles/10.5802/acirm.5/
[1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, (2003). | DOI | Zbl
[2] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire, Logic and -recognizable sets of integers, Bull. Belg. Math. Soc. 1 (1994), 191–238. | DOI | MR | Zbl
[3] E. Charlier, T. Kärki, and M. Rigo, Multidimensional Generalized Automatic Sequences and Shape-Symmetric Morphic Words, submitted for publication. | DOI | MR | Zbl
[4] A. Cobham, Uniform Tag Sequences, Math. Systems Theory 6 (1972), 164–192. | DOI | MR | Zbl
[5] P.B.A. Lecomte, M. Rigo, Numeration Systems on a Regular Language, Theory Comput. Syst. 34 (2001), 27–44. | DOI | MR | Zbl
[6] A. Maes, Decidability of the First-Order Theory of for Morphic Predicates , Preprint 9806, Inst. für Informatik und Praktische Math., Christian-Albrechts-Univ. Kiel (1998).
[7] A. Maes, An Automata-Theoretic Decidability Proof for First-Order Theory of with Morphic Predicate , J. Autom. Lang. Comb. 4 (1999), 229–245. | Zbl
[8] A. Maes, Morphic Predicates and Applications to the Decidability of Arithmetic Theories, Ph.D. Thesis, Univ. Mons-Hainaut, (1999).
[9] S. Nicolay, M. Rigo, About the Frequency of Letters in Generalized Automatic Sequences, Theoret. Comp. Sci. 374 (2007), 25–40. | DOI | MR | Zbl
[10] M. Rigo, Generalization of Automatic Sequences for Numeration Systems on a Regular Language, Theoret. Comp. Sci. 244 (2000), 271–281. | DOI | MR | Zbl
[11] M. Rigo and A. Maes, More on Generalized Automatic Sequences, J. Autom., Lang. and Comb. 7 (2002), 351–376. | Zbl
[12] O. Salon, Suites automatiques à multi-indices, Séminaire de théorie des nombres de Bordeaux, Exp. 4 (1986-1987), 4.01–4.27; followed by an Appendix by J. Shallit, 4-29A–4-36A. | Zbl
Cited by Sources: