The normal cycle of a singular subset of a smooth manifold is a basic tool for understanding and computing the curvature of . If is replaced by a singular function on then there is a natural companion notion called the gradient cycle of , which has been introduced by the author and by R. Jerrard. We discuss a few fundamental facts and open problems about functions that admit gradient cycles, with particular attention to the first nontrivial dimension .
@article{ACIRM_2013__3_1_11_0, author = {Joseph H.G. Fu}, title = {Piecewise linear approximation of smooth functions of two variables}, journal = {Actes des rencontres du CIRM}, pages = {11--16}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.51}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.51/} }
TY - JOUR AU - Joseph H.G. Fu TI - Piecewise linear approximation of smooth functions of two variables JO - Actes des rencontres du CIRM PY - 2013 SP - 11 EP - 16 VL - 3 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.51/ DO - 10.5802/acirm.51 LA - en ID - ACIRM_2013__3_1_11_0 ER -
Joseph H.G. Fu. Piecewise linear approximation of smooth functions of two variables. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 11-16. doi : 10.5802/acirm.51. https://acirm.centre-mersenne.org/articles/10.5802/acirm.51/
[1] U. Brehm; W. Kühnel Smooth approximation of polyhedral surfaces regarding curvatures., Geom. Dedicata, Volume 12 (1982), pp. 435-461 | DOI | MR
[2] L.P. Chew Guaranteed quality triangular meshes., 1989 (http://www.cs.sandia.gov/~samitch/unm_math_579/course_papers/chew_guaranteed_triangular_89-983.pdf)
[3] F.H. Clarke Optimization and nonsmooth analysis, Wiley, New York, 1990, pp. 435-461
[4] D. Cohen-Steiner; J.-M. Morvan Second fundamental measure of geometric sets and local approximation of curvatures., J. Differential Geom., Volume 74 (2006), pp. 363-394 | DOI | MR | Zbl
[5] H. Federer Curvature measures, Trans. Amer. Math. Soc., Volume 93 (1959), pp. 418-491 | DOI | MR | Zbl
[6] H. Federer Geometric measure theory, Springer, New York, 1969 | Zbl
[7] J.H.G. Fu Tubular neighborhoods in Euclidean spaces., Duke Math. J., Volume 52 (1985), pp. 1025-1046 | MR | Zbl
[8] J.H.G. Fu Monge-Ampère functions I, II., Indiana Univ. Math. J., Volume 38 (1989), p. 745-771, 773–789
[9] J.H.G. Fu Curvature measures of subanalytic sets., Amer. J. Math., Volume 116 (1994), pp. 819-880 | MR | Zbl
[10] J.H.G. Fu An extension of Alexandrov’s theorem on second derivatives of convex functions., Adv. Math., Volume 228 (2011), pp. 2258-2267 | MR
[11] J.H.G. Fu; R.C. Scott Piecewise linear approximation of smooth functions of two variables., Adv. Math., Volume 248 (2013), pp. 435-461 | MR
[12] R. L. Jerrard Some remarks on Monge-Ampère functions, Singularities in PDE and the calculus of variations (CRM Proc. Lecture Notes), Volume 44, Amer. Math. Soc., Providence, RI, 2008, pp. 89-112 | DOI | Zbl
[13] R. L. Jerrard Some rigidity results related to Monge-Ampère functions., Canad. J. Math., Volume 12 (2010), pp. 320-354 | DOI | Zbl
[14] D. Pokorný; J. Rataj Normal cycles and curvature measures of sets with d.c. boundary., Adv. Math., Volume 248 (2013), pp. 963-985 | DOI | MR | Zbl
[15] J. Shewchuk Tetrahedral Mesh Generation by Delaunay Refinement, Proceedings of the Fourteenth Annual Symposium on Computational Geometry (Minneapolis, Minnesota) (1998), pp. 86-95 | DOI
[16] M. Zähle Curvatures and currents for unions of sets with positive reach., Geom. Dedicata, Volume 23 (1987), pp. 155-171 | DOI | MR | Zbl
Cited by Sources: