Mersenne banner

Actes des rencontres du CIRM

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Full text
  • Previous
  • Browse issues
  • Volume 3 (2013)
  • no. 1
  • p. 3-10
  • Next
no. 1
Curvature measures, normal cycles and asymptotic cones
Xiang Sun1; Jean-Marie Morvan2
1 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
2 University Claude Bernard Lyon P1, France, C.N.R.S. U.M.R. 5028 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 3-10.
  • Abstract

The purpose of this article is to give an overview of the theory of the normal cycle and to show how to use it to define a curvature measures on singular surfaces embedded in an (oriented) Euclidean space 𝔼 3 . In particular, we will introduce the notion of asymptotic cone associated to a Borel subset of 𝔼 3 , generalizing the asymptotic directions defined at each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra of the 3-dimensional Euclidean space 𝔼 3 . The coherence of the theory lies in a convergence theorem: If a sequence of polyhedra (P n ) tends (for a suitable topology) to a smooth surface S, then the sequence of curvature measures of (P n ) tends to the curvature measures of S. Details on the first part of these pages can be found in [6].

  • Article information
  • Export
  • How to cite
Published online: 2014-11-12
Zbl: 06938598
DOI: 10.5802/acirm.50
Classification: 00X99
Keywords: curvature measure, shape operator, surfaces, normal cycle, asymptotic cones
Author's affiliations:
Xiang Sun 1; Jean-Marie Morvan 2

1 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
2 University Claude Bernard Lyon P1, France, C.N.R.S. U.M.R. 5028 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
  • BibTeX
  • RIS
  • EndNote
@article{ACIRM_2013__3_1_3_0,
     author = {Xiang Sun and Jean-Marie Morvan},
     title = {Curvature measures, normal cycles and asymptotic cones},
     journal = {Actes des rencontres du CIRM},
     pages = {3--10},
     publisher = {CIRM},
     volume = {3},
     number = {1},
     year = {2013},
     doi = {10.5802/acirm.50},
     zbl = {06938598},
     language = {en},
     url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.50/}
}
TY  - JOUR
TI  - Curvature measures, normal cycles and asymptotic cones
JO  - Actes des rencontres du CIRM
PY  - 2013
DA  - 2013///
SP  - 3
EP  - 10
VL  - 3
IS  - 1
PB  - CIRM
UR  - https://acirm.centre-mersenne.org/articles/10.5802/acirm.50/
UR  - https://zbmath.org/?q=an%3A06938598
UR  - https://doi.org/10.5802/acirm.50
DO  - 10.5802/acirm.50
LA  - en
ID  - ACIRM_2013__3_1_3_0
ER  - 
%0 Journal Article
%T Curvature measures, normal cycles and asymptotic cones
%J Actes des rencontres du CIRM
%D 2013
%P 3-10
%V 3
%N 1
%I CIRM
%U https://doi.org/10.5802/acirm.50
%R 10.5802/acirm.50
%G en
%F ACIRM_2013__3_1_3_0
Xiang Sun; Jean-Marie Morvan. Curvature measures, normal cycles and asymptotic cones. Actes des rencontres du CIRM, Volume 3 (2013) no. 1, pp. 3-10. doi : 10.5802/acirm.50. https://acirm.centre-mersenne.org/articles/10.5802/acirm.50/
  • References
  • Cited by

[1] David Cohen-Steiner; Jean-Marie Morvan Restricted delaunay triangulations and normal cycle, Proceedings of the nineteenth annual symposium on Computational geometry (2003), pp. 312-321 | Article | Zbl: 06783854

[2] David Cohen-Steiner; Jean-Marie Morvan 4 Differential Geometry on Discrete Surfaces, Effective computational geometry for curves and surfaces (2006) | Article | Zbl: 1116.65024

[3] David Cohen-Steiner; Jean-Marie Morvan Second fundamental measure of geometric sets and local approximation of curvatures, Journal of Differential Geometry, Volume 74 (2006) no. 3, pp. 363-394 | MR: 2269782 | Zbl: 1107.49029

[4] Joseph HG Fu Monge-Ampère Functions 1, Indiana Univ. Math. J., Volume 38 (1989), pp. 745-771

[5] Joseph HG Fu Convergence of curvatures in secant approximations, Journal of Differential Geometry, Volume 37 (1993) no. 1, pp. 177-190 | MR: 1198604 | Zbl: 0794.53044

[6] Jean-Marie Morvan Generalized curvatures, 2, Springer, 2008 | MR: 2428231 | Zbl: 1149.53001

[7] Peter Wintgen Normal cycle and integral curvature for polyhedra in Riemannian manifolds, Differential Geometry. North-Holland Publishing Co., Amsterdam-New York (1982) | Zbl: 0509.53037

[8] Martina Zähle Integral and current representation of Federer’s curvature measures, Archiv der Mathematik, Volume 46 (1986) no. 6, pp. 557-567 | Article | MR: 849863 | Zbl: 0598.53058

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2105-0597
© 2009 - 2022 Centre Mersenne, Actes des rencontres du CIRM, and the authors