Let be a one-dimensional analytically irreducible ring and let be an integral ideal of . We study the relation between the irreducibility of the ideal in and the irreducibility of the corresponding semigroup ideal . It turns out that if is irreducible, then is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition of a nonzero ideal.
@article{ACIRM_2010__2_2_91_0, author = {Valentina Barucci and Faten Khouja}, title = {Irreducibility of ideals in a one-dimensional analytically irreducible ring}, journal = {Actes des rencontres du CIRM}, pages = {91--93}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.40}, zbl = {1434.13005}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.40/} }
TY - JOUR AU - Valentina Barucci AU - Faten Khouja TI - Irreducibility of ideals in a one-dimensional analytically irreducible ring JO - Actes des rencontres du CIRM PY - 2010 SP - 91 EP - 93 VL - 2 IS - 2 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.40/ DO - 10.5802/acirm.40 LA - en ID - ACIRM_2010__2_2_91_0 ER -
%0 Journal Article %A Valentina Barucci %A Faten Khouja %T Irreducibility of ideals in a one-dimensional analytically irreducible ring %J Actes des rencontres du CIRM %D 2010 %P 91-93 %V 2 %N 2 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.40/ %R 10.5802/acirm.40 %G en %F ACIRM_2010__2_2_91_0
Valentina Barucci; Faten Khouja. Irreducibility of ideals in a one-dimensional analytically irreducible ring. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 91-93. doi : 10.5802/acirm.40. https://acirm.centre-mersenne.org/articles/10.5802/acirm.40/
[1] V. Barucci, Decompositions of ideals into irreducible ideals in numerical semigroups. Journal of Commutative Algebra 2 (2010), 281-294. | DOI | MR | Zbl
[2] V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings. J. Algebra 188 (1997), 418-442. | DOI | MR | Zbl
[3] J. Jäger, Langenberechnung und kanonische Ideale in eindimensionalen Ringen. Arch. Math. 29 (1977), 504-512. | DOI | Zbl
[4] W. Vasconcelos, Computational Methods in Commutative Alegebra and Algebraic Geometry. Springer-Verlag, 1998. | DOI
[5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry. Birkhauser, 1984. | DOI
[6] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra. Springer-Verlag, 2005. | DOI | Zbl
Cited by Sources: