

Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières

Rencontre organisée par : Sabine Evrard

29 novembre-3 décembre 2010

Valentina Barucci and Faten Khouja Irreducibility of ideals in a one-dimensional analytically irreducible ring Vol. 2, n° 2 (2010), p. 91-93. http://acirm.cedram.org/item?id=ACIRM_2010_2_91_0

> Centre international de rencontres mathématiques U.M.S. 822 C.N.R.S./S.M.F. Luminy (Marseille) FRANCE

cedram

Texte mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Irreducibility of ideals in a one-dimensional analytically irreducible ring

Valentina BARUCCI and Faten KHOUJA

Abstract

Let R be a one-dimensional analytically irreducible ring and let I be an integral ideal of R. We study the relation between the irreducibility of the ideal I in R and the irreducibility of the corresponding semigroup ideal v(I). It turns out that if v(I) is irreducible, then I is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition of a nonzero ideal.

A numerical semigroup is a subsemigroup of \mathbb{N} , with zero and with finite complement in \mathbb{N} . The numerical semigroup generated by $d_1, \ldots, d_{\nu} \in \mathbb{N}$ is $S = \langle d_1, \ldots, d_{\nu} \rangle = \{\sum_{i=1}^{\nu} n_i d_i, n_i \in \mathbb{N}\}$. $M = S \setminus \{0\}$ will denote the maximal ideal of S, e the multiplicity of S, that is the smallest positive integer of S, g the Frobenius number of S, that is the greatest integer which does not belong to S. A relative ideal of S is a nonempty subset I of \mathbb{Z} such that $I + S \subseteq I$ and $I + s \subseteq S$, for some $s \in S$. A relative ideal which is contained in S is an integral ideal of S. If I, J are relative ideals of S, then the following are relative ideals too: $I \cap J$, $I \cup J$, $I + J = \{i + j, i \in I, j \in J\}$, $I = J = \{z \in \mathbb{Z} | z + J \subseteq I\}$, $I = J = (I = J) \cap S$. An integral ideal I of a numerical semigroup S is called *irreducible* if it is not the intersection of two integral ideals which properly contain I. Consider the partial order on S given by $s_1 \preccurlyeq s_2 \Leftrightarrow s_1 + s_3 = s_2$, for some $s_3 \in S$, and for $s \in S$, set $B(s) = \{x \in S | x \preccurlyeq s\}$.

Proposition 1. Let I be a proper integral ideal of S. Then I is irreducible if and only if $I = S \setminus B(s)$, for some $s \in S$.

Theorem 1. a) If I is a proper integral ideal of S and if $(I - M) \setminus I = \{s_1, \ldots, s_n\}$, then $I = (S \setminus B(s_1)) \cap \ldots \cap (S \setminus B(s_n))$ is the unique irredundant decomposition of I in integral irreducible ideals.

b) I is irreducible if and only if $|(I - M) \setminus I| = 1$.

A relative ideal I of a numerical semigroup S is called \mathbb{Z} -*irreducible* if it is not the intersection of two relative ideals which properly contain I. A particular relative ideal of S plays a special role, it is the canonical ideal Ω which is maximal with respect to the property of non containing g, the Frobenius number of S. Thus $\Omega = \{g - x, x \in \mathbb{Z} \setminus S\}$.

Proposition 2. Let J be a relative ideal of S. Then J is \mathbb{Z} -irreducible if and only if $J = \Omega + z$ for some $z \in \mathbb{Z}$, if and only if $|(J - M) \setminus J| = 1$.

Theorem 2. I is a relative ideal of S minimally generated by i_1, \ldots, i_h if and only if $\Omega = I = (\Omega - i_1) \cap \ldots \cap (\Omega - i_h)$ is the unique irredundant decomposition of $\Omega = I$ in \mathbb{Z} -irreducibles ideals.

2000 Mathematics Subject Classification. 13A15, 13H10.

Text presented during the meeting "Third International Meeting on Integer-Valued Polynomials" organized by Sabine Evrard. 29 novembre-3 décembre 2010, C.I.R.M. (Luminy).

Key words. Numerical semigroup, canonical ideal, irreducible ideal.

Corollary 1. Each relative ideal J of S has a unique irredundant decomposition as intersection of \mathbb{Z} -irreducible ideals. The number of components is the cardinality of a minimal set of generators of $\Omega - J$, which is also equal to $|(J - M) \setminus J|$.

Applications to one-dimensional Rings: As usual, an integral ideal I of a ring R is called *irreducible* if it is not the intersection of two proper overideals. A fractional ideal F of a ring R with total ring of fractions K is called K-*irreducible* if it is not the intersection of two strictly larger fractional ideals.

Using the following lemma, we recover a known result with Proposition 3 below [4, Proposition 3.1.6, p.67].

Lemma 1. Let I be an ideal of a local ring (R, m) and J an irreducible ideal such that $I \subseteq J$. Then $l_R((I : m)/J \cap (I : m)) \leq 1$.

Proposition 3. Let (R,m) be a Noetherien local ring and I be an m-primary ideal. Then the number n(I) of components of an irredundant decomposition of I is

$$n(I) = l_R((I : m)/I) = dim_{R/m} Socle(R/I)$$

Corollary 2. Let (R,m) be a Noetherien local ring and I be an m-primary ideal. Then I is irreducible if and only if $l_R((I : m)/I) = 1$.

Let R be an integral domain with field of fractions K. A fractional ideal ω of R is called an *m*-canonical ideal if for any nonzero fractional ideal I of R, we have $I = \omega \underset{K}{:} (\omega \underset{K}{:} I)$. We fix from here on the following notation: (R, m) is a one-dimensional analytically irreducible Noetherian domain. This is a domain for which the integral closure $V = \overline{R}$ in the field of fractions K of R is a rank-one discrete valuation domain and is a finitely generated R-module.

Let $v : K \setminus \{0\} \to \mathbb{Z}$ be the normalized valuation associated to V. Thus, if $t \in V$ generates the maximal ideal of V, then v(t) = 1. Moreover, we assume that $R/m \simeq V/M$, where M = tV is the maximal ideal of V, i.e. R is residually rational. A one-dimensional analytically irreducible Noetherian domain has an m-canonical ideal, cf. e.g. [2]. Observe that: $S = v(R) = \{v(r) | r \in R \setminus \{0\}\}$ is a numerical semigroup. We denote by Ω the canonical ideal of v(R).

Proposition 4. Let F be a fractional ideal of R. Then F is K-irreducible if and only if $l_R(F : K m/F) = 1$ if and only if $v(F) = \Omega + z$, for some $z \in \mathbb{Z}$.

Corollary 3. Let F be a fractional ideal of R. Then F is K-irreducible if and only if v(F) is \mathbb{Z} -irreducible.

It is a natural question to ask whether a result similar to Corollary 3 holds for integral ideals.

Theorem 3. Let I be a non zero integral ideal of R such that v(I) is irreducible, then I is irreducible.

Proof: Now I is m-primary, so $I \subset (I \underset{R}{:} m)$. Since $v(I \underset{R}{:} m) \setminus v(I) \subseteq (v(I) \underset{S}{-} v(m)) \setminus v(I)$, we have $l_R((I \underset{R}{:} m)/I) = |v(I \underset{R}{:} m) \setminus v(I)| \le |(v(I) \underset{S}{-} v(m) \setminus v(I)| = 1$, where the last equality follows from Theorem 1 b). So by Corollary 2, I is irreducible.

The converse of Theorem 3 does not hold, as the following example shows.

Example: $S = \langle 2, 5 \rangle = \{0, 2, 4, \rightarrow\}, R = k[[t^2, t^5]], I = (t^4 + t^5, t^7), \text{ we have: } v(I) - \frac{1}{s}v(m) \setminus v(I) = \{2, 5\}, \text{ then by Theorem 1, a) } v(I) = (S \setminus B(2)) \cap (S \setminus B(5)). \text{ So } v(I) \text{ is not irreducible.}$ But, $l_R((I : m)/I) = (v(I) : v(m)) \setminus v(I) = 1$. In fact, consider $f = a_2t^2 + a_4t^4 + a_5t^5 + \ldots \in R$, with $a_2 \neq 0$. If $ft^2 \in I$, $ft^2 = h(t^4 + t^5) + gt^7$, such that $h = b_0 + b_2t^2 + b_4t^4 + \ldots$, then $0 = b_0 = a_2$, so that $ft^2 \notin I$. Thus $f \notin (I : m)$. Hence I is irreducible.

Corollary 4. Let I be a monomial ideal of $k[[t^{n_1}, \ldots, t^{n_k}]]$. Then, I is irreducible if and only if v(I) is irreducible.

In other terms, the non trivial deduction of Corollary 4 says that, if I is a monomial ideal which is not the intersection of two strictly larger monomial ideals, then I is not the intersection of two strictly larger ideals, even if non monomial ideals are allowed. This is indeed known in a more general context [6, Proposition 11, p.41].

Algorithm: The following algorithm is a method for computing the components of an irredundant decomposition of a non zero ideal I of R.

- (1) Compute the length of $(I \underset{R}{:} m/I)$ as R-module, $l_R(I \underset{R}{:} m/I) = n$
- (2) Look at a set of generators of (I : m/I) as R/m vector space.

$$(I: m/I) = < f_1 + I, \dots, f_n + I > .$$

(3) Let for i = 1, ..., n,

$$J_i = (I, f_1, \dots, f_{i-1}, f_{i+1}, \dots, f_n)$$

- (4) For each J_i, we will construct another ideal J'_i such that J_i ⊆ J'_i, J'_i is irreducible and ∩ J'_i = I. Compute the length of (J_i : m/J_i). If l_R(J_i : m/J_i) = 1, then we take J'_i = J_i. If not, look at a set of generators (g₁ + J_i, ..., g_j + J_i) of (J_i : m/J_i) as R/m vector space. Since I : m ⊆ J_i : m and f_i ∉ J_i, we can take g₁ = f_i.
- (5) Iterating the construction above we will obtain:

$$J_{i1} = (J_i, g_2, \dots, g_s)$$

$$J_{i2} = (J_i, f_i, g_3, \dots, g_s)$$

$$\vdots$$

$$J_{ij} = (J_i, f_i, \dots, g_{s-1})$$

Yet we are interested only in the ideal J_{i1} which does not contain $f_i = g_1$. (6) Compute the length of $(J_{i1} \ _R^{} m/J_{i1})$.

If $l_R(J_{i1} : m/J_{i1}) = 1$, then we take $J'_i = J_{i1}$. If not we proceed in the same way. After at most k-2 steps, where $k = l_R(R/I)$, we find an irreducible ideal J'_i .

It is easy to see that $\bigcap_{i\neq j} J'_j \nsubseteq J'_i$, because $f_i \in \bigcap_{j\neq i} J'_j$ but $f_i \notin J'_i$. We claim that $I = \bigcap_{i=1}^n J'_i$ is an irredundant intersection of I into irreducible ideals. In fact suppose that we have $I \subset \bigcap_{i=1}^n J'_i$. Then

$$I \subset \bigcap_{i=1}^{n} J'_{i} \subset J'_{2} \cap \ldots \cap J'_{n} \subset \ldots \subset J'_{n-1} \cap J'_{n} \subset J'_{n} \cap (I : m) \subset (I : m),$$

a contradiction since $l_R = (I : m/I) = n$, so $I = \bigcap_{i=1}^n J'_i$.

References

- V. Barucci, Decompositions of ideals into irreducible ideals in numerical semigroups. Journal of Commutative Algebra 2 (2010), 281-294.
- [2] V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings. J. Algebra 188 (1997), 418-442.
- [3] J. Jäger, Langenberechnung und kanonische Ideale in eindimensionalen Ringen. Arch. Math. 29 (1977), 504-512.
- [4] W. Vasconcelos, Computational Methods in Commutative Alegebra and Algebraic Geometry. Springer-Verlag, 1998.
- [5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry. Birkhauser, 1984.
- [6] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra. Springer-Verlag, 2005.

Dipartimento di Matematica, Sapienza, Università di Roma, Piazzale A. Moro 2, 00185 Rome, ITALY • barucci@mat.uniroma1.it

Department of Mathematics, Faculty of Sciences, 5000 Monastir, TUNISIA. • koja-faten@yahoo.fr