Birings and plethories of integer-valued polynomials

Jesse Elliott^{1}
^{1} Department of Mathematics California State University, Channel Islands Camarillo, California 93012

Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 53-58.

Published online:

Zbl:
1439.13062

DOI:
10.5802/acirm.34
Classification:
13G05, 13F20, 13F05, 16W99

Keywords: Biring, plethory, integer-valued polynomial.

Keywords: Biring, plethory, integer-valued polynomial.

Author's affiliations:
Jesse Elliott ^{1}
^{1} Department of Mathematics California State University, Channel Islands Camarillo, California 93012

Jesse Elliott. Birings and plethories of integer-valued polynomials. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 53-58. doi : 10.5802/acirm.34. https://acirm.centre-mersenne.org/articles/10.5802/acirm.34/

[1] G. Bergman and A. Hausknecht, Cogroups and Co-Rings in Categories of Associative Rings, Mathematical Surveys and Monographs, Volume 45, American Mathematical Society, 1996. | Zbl

[2] J. Borger and B. Wieland, Plethystic algebra, Adv. Math. 194 (2005) 246–283. | DOI | MR | Zbl

[3] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, 1997.

[4] J. Elliott, Binomial rings, integer-valued polynomials, and $\lambda $-rings, J. Pure Appl. Alg. 207 (2006) 165–185. | DOI | Zbl

[5] J. Elliott, Universal properties of integer-valued polynomial rings, J. Algebra 318 (2007) 68–92. | DOI | MR | Zbl

[6] J. Elliott, Some new approaches to integer-valued polynomial rings, in Commutative Algebra and its Applications: Proceedings of the Fifth Interational Fez Conference on Commutative Algebra and Applications, Eds. Fontana, Kabbaj, Olberding, and Swanson, de Gruyter, New York, 2009. | DOI

[7] J. Elliott, Biring and plethory structures on integer-valued polynomial rings, to be submitted for publication.

[8] C. J. Hwang and G. W. Chang, Bull. Korean Math. Soc. 35 (2) (1998) 259–268.

[9] D. O. Tall and G. C. Wraith, Representable functors and operations on rings, Proc. London Math Soc. (3) 20 (1970) 619–643. | DOI | MR | Zbl

*Cited by Sources: *