Let be the ring of integer valued polynomials over . This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of . In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of at all prime ideals of . This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.
@article{ACIRM_2010__2_2_59_0, author = {H. Lombardi}, title = {Un anneau de {Pr\"ufer}}, journal = {Actes des rencontres du CIRM}, pages = {59--69}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.35}, zbl = {1439.13046}, language = {fr}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.35/} }
H. Lombardi. Un anneau de Prüfer. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 59-69. doi : 10.5802/acirm.35. https://acirm.centre-mersenne.org/articles/10.5802/acirm.35/
[1] Bishop E. Foundations of Constructive Analysis. McGraw Hill, (1967). | DOI | Zbl
[2] Bishop E., Bridges D. Constructive Analysis. Springer-Verlag, (1985). | DOI | Zbl
[3] Bridges D., Richman F. Varieties of Constructive Mathematics. London Math. Soc. LNS 97. Cambridge University Press (1987). | DOI | Zbl
[4] Chabert J.-L. Anneaux de polynômes à valeurs entières et anneaux de Fatou. Bull. soc. math. France, 99, (1971), 273–283. | DOI | Numdam | Zbl
[5] Chabert J.-L. Un anneau de Prüfer. Journal of Algebra, 107, (1987), 1–16. | DOI
[6] Coquand T. Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I, 338, (2004), 291–294. | DOI | Zbl
[7] Coquand T. On seminormality. Journal of Algebra, 305, (2006), 585–602. | DOI | MR | Zbl
[8] Coquand T. Space of valuations, Annals of Pure and Applied Logic, 157, (2009), 97-109. | DOI | MR | Zbl
[9] Coquand T., Lombardi H. A logical approach to abstract algebra. (survey) Math. Struct. in Comput. Science, 16, (2006), 885–900. | DOI | MR | Zbl
[10] Coquand T., Lombardi H., Quitté C. Generating non-Nœtherian modules constructively. Manuscripta mathematica, 115, (2004), 513–520. | DOI | MR | Zbl
[11] Coquand T., Lombardi H., Schuster P. Spectral Schemes as Ringed Lattices. Annals of Mathematics and Artificial Intelligence. 56, (2009), 339–360. | DOI | MR | Zbl
[12] Coquand T., Quitté C. Constructive Finite Free Resolutions. Preprint 2011. | DOI | MR | Zbl
[13] Coste M., Lombardi H., Roy M.-F. Dynamical method in algebra : Effective Nullstellensätze. Annals of Pure and Applied Logic 111, (2001) 203–256. | DOI | Zbl
[14] Díaz-Toca G., Lombardi H. Dynamic Galois Theory. Journal of Symbolic Computation. 45, (2010) 1316–1329. | DOI | MR | Zbl
[15] Ducos L., Lombardi H., Quitté C., Salou M. Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. Journal of Algebra, 281, (2004), 604–650. | DOI | Zbl
[16] Gilmer R. Multiplicative Ideal Theory. Queens papers in pure and applied Math, vol. 90, 1992. | DOI
[17] Jensen C. Arithmetical rings. Acta Mathematica Academiae Scientiarum Hungaricae, 17, (1966) 115–123. Birkhäuser, (1991). | DOI | MR | Zbl
[18] Lombardi H. Algèbre dynamique, espaces topologiques sans points et programme de Hilbert. Annals of Pure and Applied Logic, 137, (2006), 256–290. | DOI | Zbl
[19] Lombardi H., Quitté C. Constructions cachées en algèbre abstraite (2) Le principe local global, dans : Commutative ring theory and applications, eds. Fontana M., Kabbaj S.-E., Wiegand S. Lecture notes in pure and applied mathematics vol 231. M. Dekker, (2002). p. 461–476. | DOI | Zbl
[20] Lombardi H., Quitté C. Algèbre commutative. Méthodes constructives. Livre à paraître. | Zbl
[21] Mines R., Richman F., Ruitenburg W. A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). | DOI | MR | Zbl
[22] Richman F. Non trivial uses of trivial rings. Proc. Amer. Math. Soc., 103, (1988), 1012–1014. | DOI | MR | Zbl
[23] Yengui I. Making the use of maximal ideals constructive. Theoretical Computer Science, 392, (2008) 174–178. | DOI | MR | Zbl
Cited by Sources: