@article{ACIRM_2009__1_1_3_0, author = {Akiyama, Shigeki}, title = {Finiteness and periodicity of beta expansions {\textendash} number theoretical and dynamical open problems}, journal = {Actes des rencontres du CIRM}, pages = {3--9}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2009}, doi = {10.5802/acirm.2}, zbl = {06938550}, language = {en}, url = {https://www.numdam.org/articles/10.5802/acirm.2/} }
TY - JOUR AU - Akiyama, Shigeki TI - Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems JO - Actes des rencontres du CIRM PY - 2009 SP - 3 EP - 9 VL - 1 IS - 1 PB - CIRM UR - https://www.numdam.org/articles/10.5802/acirm.2/ DO - 10.5802/acirm.2 LA - en ID - ACIRM_2009__1_1_3_0 ER -
%0 Journal Article %A Akiyama, Shigeki %T Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems %J Actes des rencontres du CIRM %D 2009 %P 3-9 %V 1 %N 1 %I CIRM %U https://www.numdam.org/articles/10.5802/acirm.2/ %R 10.5802/acirm.2 %G en %F ACIRM_2009__1_1_3_0
Akiyama, Shigeki. Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems. Actes des rencontres du CIRM, Numération : mathématiques et informatique, Tome 1 (2009) no. 1, pp. 3-9. doi : 10.5802/acirm.2. https://www.numdam.org/articles/10.5802/acirm.2/
[1] S. Akiyama, The dynamical norm conjecture and Pisot tilings, Sūrikaisekikenkyūsho Kōkyūroku (1999), no. 1091, 241–250. | Zbl
[2] S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), no. 2, 283–308. | DOI | MR | Zbl
[3] —, Pisot number system and its dual tiling, Physics and Theoretical Computer Science, IOS Press, 2007, pp. 133–154.
[4] S. Akiyama, H. Brunotte, A. Pethő, and W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math. 32 (2008), no. 1, 1–55. | DOI | MR | Zbl
[5] S. Akiyama and N. Gjini, Connectedness of number theoretic tilings, Discrete Math. Theor. Comput. Sci. 7 (2005), no. 1, 269–312. | MR | Zbl
[6] V. Berthé and A. Siegel, Purely periodic
[7] F. Blanchard,
[8] D. W. Boyd, Salem numbers of degree four have periodic expansions, Number theory, Walter de Gruyter, 1989, pp. 57–64. | DOI
[9] —, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861–875. | DOI | MR | Zbl
[10] R. Fischer, Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen, Math. Z. 128 (1972), 217–230. | DOI | Zbl
[11] Ch. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713–723. | DOI | MR | Zbl
[12] F. Hofbauer,
[13] Sh. Ito and H. Rao, Purely periodic
[14] Sh. Ito and Y. Takahashi, Markov subshifts and realization of
[15] T. Kamae, Numeration systems, fractals and stochastic processes, Israel J. Math. 149 (2005), 87–135, Probability in mathematics. | DOI | MR | Zbl
[16] K. Koupstov, J. H. Lowenstein, and F. Vivaldi, Quadratic rational rotations of the torus and dual lattice maps, Nonlinearity 15 (2002), 1795–1842. | DOI | MR | Zbl
[17] I. Kubo, H. Murata, and H. Totoki, On the isomorphism problem for endomorphisms of Lebesgue spaces. II, Publ. Res. Inst. Math. Sci. 9 (1973/74), 297–303. | DOI | MR | Zbl
[18] J. C. Lagarias and Y. Wang, Haar bases for
[19] —, Corrigendum/addendum: “Haar bases for
[20] J.C. Lagarias and Y. Wang, Integral self-affine tiles in
[21] —, Self-affine tiles in
[22] —, Integral self-affine tiles in
[23] W. Parry, On the
[24] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. | DOI | MR | Zbl
[25] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Math. 25 (1961), 499–530. | MR
[26] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269–278. | DOI | MR | Zbl
[27] M. Smorodinsky,
[28] Y. Takahashi, Isomorphisms of
Cité par Sources :