Mersenne banner

Actes des rencontres du CIRM

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Browse issues
  • Volume 2 (2010)
  • no. 1
  • p. 15-24
  • Next
no. 1
Upper tails of self-intersection local times of random walks: survey of proof techniques
Wolfgang König1
1 Technical University Berlin, Str. des 17. Juni 136, 10623 Berlin, and Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
Actes des rencontres du CIRM, Volume 2 (2010) no. 1, pp. 15-24.
  • Abstract

The asymptotics of the probability that the self-intersection local time of a random walk on ℤ d exceeds its expectation by a large amount is a fascinating subject because of its relation to some models from Statistical Mechanics, to large-deviation theory and variational analysis and because of the variety of the effects that can be observed. However, the proof of the upper bound is notoriously difficult and requires various sophisticated techniques. We survey some heuristics and some recently elaborated techniques and results. This is an extended summary of a talk held on the CIRM-conference on Excess self-intersection local times, and related topics in Luminy, 6-10 Dec., 2010.

  • Article information
  • Export
  • How to cite
Published online: 2011-01-02
Zbl: 06938566
DOI: 10.5802/acirm.18
Classification: 60K37, 60F10, 60J55
Keywords: Self-intersection local time, upper tail, Donsker-Varadhan large deviations, variational formula
Author's affiliations:
Wolfgang König 1

1 Technical University Berlin, Str. des 17. Juni 136, 10623 Berlin, and Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
  • BibTeX
  • RIS
  • EndNote
@article{ACIRM_2010__2_1_15_0,
     author = {Wolfgang K\"onig},
     title = {Upper tails of self-intersection local times of random walks: survey of proof techniques},
     journal = {Actes des rencontres du CIRM},
     pages = {15--24},
     publisher = {CIRM},
     volume = {2},
     number = {1},
     year = {2010},
     doi = {10.5802/acirm.18},
     zbl = {06938566},
     language = {en},
     url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.18/}
}
TY  - JOUR
AU  - Wolfgang König
TI  - Upper tails of self-intersection local times of random walks: survey of proof techniques
JO  - Actes des rencontres du CIRM
PY  - 2010
SP  - 15
EP  - 24
VL  - 2
IS  - 1
PB  - CIRM
UR  - https://acirm.centre-mersenne.org/articles/10.5802/acirm.18/
UR  - https://zbmath.org/?q=an%3A06938566
UR  - https://doi.org/10.5802/acirm.18
DO  - 10.5802/acirm.18
LA  - en
ID  - ACIRM_2010__2_1_15_0
ER  - 
%0 Journal Article
%A Wolfgang König
%T Upper tails of self-intersection local times of random walks: survey of proof techniques
%J Actes des rencontres du CIRM
%D 2010
%P 15-24
%V 2
%N 1
%I CIRM
%U https://doi.org/10.5802/acirm.18
%R 10.5802/acirm.18
%G en
%F ACIRM_2010__2_1_15_0
Wolfgang König. Upper tails of self-intersection local times of random walks: survey of proof techniques. Actes des rencontres du CIRM, Volume 2 (2010) no. 1, pp. 15-24. doi : 10.5802/acirm.18. https://acirm.centre-mersenne.org/articles/10.5802/acirm.18/
  • References
  • Cited by

[A08] A. Asselah, Large deviations estimates for self-intersection local times for simple random walk in ℤ 3 , Probab. Theory Relat. Fields 141, 19-45 (2008). | DOI | MR | Zbl

[A09] A. Asselah, Large deviation principle for self-intersection local times for random walk in ℤ d with d≥5, ALEA Lat. Am. J. Probab. Math. Stat. 6, 281-322 (2009). | Zbl

[A10] A. Asselah, Shape transition under excess self-intersections for transient random walk, Ann. Inst. Henri Poincaré Probab. Stat. 46:1, 250-278 (2010). | DOI | MR | Zbl

[AC07] A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions d≥5. Probab. Theory Relat. Fields 138, 1-32 (2007). | DOI | MR | Zbl

[BHK07] D. Brydges, R. van der Hofstad and W. König, Joint density for the local times of continuous-time Markov chains, Ann. Probab. 35:4, 1307-1332 (2007). | DOI | MR | Zbl

[BK11+] M. Becker and W. König, Self-intersection local times of random walks: exponential moments in supercritical dimensions, in preparation. | DOI | MR | Zbl

[BK09] M. Becker and W. König, Moments and distribution of the local times of a transient random walk on ℤ d , Jour. Theor. Prob. 22:2, 365 - 374 (2009). | DOI | MR | Zbl

[BK10] M. Becker and W. König, Self-intersection local times of random walks: exponential moments in subcritical dimensions, preprint (2010). | DOI | MR | Zbl

[Ca10] F. Castell, Large deviations for intersection local time in critical dimension, Ann. Probab. 38:2, 927-953 (2010). | DOI | MR | Zbl

[Ce07] J. Cerny, Moments and distribution of the local times of a two-dimensional random walk, Stoch. Proc. Appl. 117, 262-270 (2007). | DOI | MR | Zbl

[Ch09] X. Chen, Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, AMS. (2010) Vol. 157, Providence, RI.

[CM09] X. Chen and P. Mörters, Upper tails for intersection local times of random walks in supercritical dimensions. J. London Math. Soc. 79, 186-210 (2009). | DOI | MR | Zbl

[D88] E.B. Dynkin, Self-intersection gauge for random walks and for Brownian motion, Ann. Probab. 16, 1-57 (1988). | DOI | MR | Zbl

[dA85] A. de Acosta, Upper bounds for large deviations of dependent random vectors, Z. Wahrsch. Verw. Gebiete 69, 551-565 (1985). | DOI | MR | Zbl

[DV79] M. Donsker and S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32, 721–747 (1979). | DOI | MR | Zbl

[DZ98] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2 nd Edition. Springer, New York (1998). | Zbl

[GKS07] N. Gantert, W. König and Z. Shi, Annealed deviations for random walk in random scenery, Ann. Inst. Henri Poincaré (B) Prob. Stat. 43:1, 47-76 (2007). | DOI | MR | Zbl

[HKM06] R. van der Hofstad, W. König and P. Mörters, The universality classes in the parabolic Anderson model, Commun. Math. Phys. 267:2, 307-353 (2006). | DOI | MR | Zbl

[KM02] W. König and P. Mörters, Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab. 30, 1605–1656 (2002). | DOI | MR | Zbl

[L10a] C. Laurent, Large deviations for self-intersection local times of stable random walks, arXiv: 1003.6060, preprint (2010). | DOI | MR | Zbl

[L10b] C. Laurent, Large deviations for self-intersection local times in subcritical dimensions, arXiv: 1011.6486, preprint (2010). | DOI | MR | Zbl

[Le86] J.-F. Le Gall, Propriétés d’intersection des marches aléatoires, I. Convergence vers le temps local d’intersection, Com. Math. Phys. 104, 471-507 (1986). | DOI | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2105-0597