@article{ACIRM_2009__1_1_55_0, author = {Tanguy Rivoal}, title = {On the binary expansion of irrational algebraic numbers}, journal = {Actes des rencontres du CIRM}, pages = {55--60}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2009}, doi = {10.5802/acirm.10}, zbl = {06938558}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.10/} }
TY - JOUR AU - Tanguy Rivoal TI - On the binary expansion of irrational algebraic numbers JO - Actes des rencontres du CIRM PY - 2009 SP - 55 EP - 60 VL - 1 IS - 1 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.10/ DO - 10.5802/acirm.10 LA - en ID - ACIRM_2009__1_1_55_0 ER -
Tanguy Rivoal. On the binary expansion of irrational algebraic numbers. Actes des rencontres du CIRM, Volume 1 (2009) no. 1, pp. 55-60. doi : 10.5802/acirm.10. https://acirm.centre-mersenne.org/articles/10.5802/acirm.10/
[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547–565. | DOI | MR | Zbl
[2] B. Adamczewski, The many faces of , slides of a talk given at the conference “Diophantine Approximation and related topics” (Tokyo) in march 2009.
[3] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16(3) (2004), 487–518. | DOI | MR
[4] E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271. | DOI | Zbl
[5] D. G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc bf 8 (1933), 254–260. | DOI | MR | Zbl
[6] A. J. Kempner, On transcendental numbers, Trans. Amer. Math. Soc. 17 (1916), 476–482. | DOI | MR | Zbl
[7] M.J. Knight, An “oceans of zeros” proof that a certain non-Liouville number is transcendental, Amer. Math. Monthly 98 (1991), no. 10, 947–949. | DOI | MR | Zbl
[8] D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125–131. | DOI | MR | Zbl
[9] T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), no. 1, 95–111. | DOI | MR | Zbl
[10] T. Rivoal, Convergents and irrationality measures of logarithms, Rev. Mat. Iberoamericana 23.3 (2007), 931–952. | DOI | MR | Zbl
[11] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. | DOI | Zbl
[12] W. Sierpiński, Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’une tel nombre, Bull. SMF 45 (1917), 125–132. | DOI | Zbl
Cited by Sources: