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Star operations in extensions
of integral domains

David F. Anderson, Said El Baghdadi, and Muhammad Zafrullah
Abstract

An extension D ⊆ R of integral domains is strongly t-compatible (resp., t-compatible) if
(IR)−1 = (I−1R)v (resp., (IR)v = (IvR)v) for every nonzero finitely generated fractional
ideal I of D. We show that strongly t-compatible implies t-compatible and give exam-
ples to show that the converse does not hold. We also indicate situations where strong
t-compatibility and its variants show up naturally. In addition, we study integral domains
D such that D ⊆ R is strongly t-compatible (resp., t-compatible) for every overring R of D.

SUMMARY1

Throughout this summary, let D be an integral domain with quotient field K. Let F (D) be the
set of nonzero fractional ideals of D, f(D) the set of nonzero finitely generated fractional ideals
of D, and I(D) the set of nonzero integral ideals of D. Recall that a star operation ∗ on D is a
function I 7→ I∗ on F (D) with the following properties:

If I, J ∈ F (D) and 0 6= x ∈ K, then

(i) D∗ = D and (xI)∗ = xI∗;
(ii) I ⊆ I∗ and if I ⊆ J , then I∗ ⊆ J∗; and
(iii) (I∗)∗ = I∗.

For a quick review of properties of star operations, the reader may consult [23, Sections 32 and
34]. An I ∈ F (D) is said to be a ∗-ideal if I∗ = I, and a ∗-ideal I has finite type if I = J∗ for some
J ∈ f(D). A star operation ∗ is of finite type if I∗ =

⋃
{J∗ | J ∈ f(D) and J ⊆ I}. To any star

operation ∗, we can associate a star operation ∗s of finite type by defining I∗s =
⋃
{J∗ | J ∈ f(D)

and J ⊆ I}. Clearly I∗s ⊆ I∗, and if I is finitely generated, then I∗ = I∗s .
Recall that for I ∈ F (D), we have I−1 = D :K I = {x ∈ K | xI ⊆ D}. The functions defined

on F (D) by I 7→ Iv = (I−1)−1 and I 7→ It =
⋃
{Jv | J ∈ f(D) and J ⊆ I} are well known star

operations, known as the v- and t-operations. An I ∈ F (D) is divisorial or a v-ideal (resp., t-ideal)
if Iv = I (resp., It = I). By definition, the t-operation is the finite-type star operation associated
to the v-operation.

Let D be a subring of an integral domain R. We call D ⊆ R an extension of integral domains
and call R an overring of D if R ⊆ K. We shall use the v- and t-operations extensively, and we
shall assume a working knowledge of these operations. Following [15], an integral domain R is said
to be t-linked over its subring D if I−1 = D implies that (IR)−1 = R for every I ∈ f(D). One
reason for writing this article is the following comment in [42, page 443]. “We note that in each
of the extensions D ⊆ R, discussed above, R is t-linked over D, i.e., for every I ∈ f(D), I−1 = D
implies (IR)−1 = R ([15]). So in each case, there is a homomorphism θ :Clt(D) −→ Clt(R) defined
by θ([I]) = [(IR)t] ([3]). However, if R is t-linked over D, the extension D ⊆ R may not satisfy
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any of (a)-(d) and may not satisfy any of the equivalent conditions. (These facts will be included
in a detailed account in the promised article.)” The “equivalent conditions" mentioned in the quote
are the equivalent conditions of [42, Proposition 2.6]. (The third author thanks Jesse Elliott for
reminding him of that promise.) We provide the example(s) hinted at in the above quote. The
rest of the plan will be presented after we have given sufficient introduction.

Let vX - (resp., tX -) denote the v- (resp., t-) operation on an integral domain X. We have the
following theorem.

Theorem 0.1. Let R be an integral domain with quotient field L, and let D be a subring of R
with quotient field K. Then the following statements are equivalent. Moreover, if R :L IR =
((D :K I)R)vR

for every I ∈ f(D), then the following statements hold.

(1) IvD
R ⊆ (IR)vR

for every I ∈ f(D).
(2) (IR)vR

= (IvD
R)vR

for every I ∈ f(D).
(3) ItD

R ⊆ (IR)tR
for every I ∈ F (D).

(4) (IR)tR
= (ItD

R)tR
for every I ∈ F (D).

(5) (IR)vR
= (ItD

R)vR
for every I ∈ F (D).

(6) If I is an integral t-ideal of R such that I ∩D 6= (0), then I ∩D is a t-ideal of D.
(7) If I is a principal fractional ideal of R such that I ∩D 6= (0), then I ∩D is a t-ideal of D.

According to [8, Proposition 1.1], via [42, Proposition 2.6], conditions (1)-(6) are all equivalent
and an extension D ⊆ R of integral domains is called t-compatible if it satisfies any of (1)-(6)
(e.g., (IR)tR

= (ItD
R)tR

for every I ∈ F (D)). (These are the equivalent conditions hinted at in
the quote above.) More generally, as in [4], given star operations ∗D and ∗R on integral domains
D ⊆ R, we say that ∗D and ∗R are compatible if (IR)∗R = (I∗DR)∗R for every I ∈ F (D). Note that
v-compatibility implies t-compatibility. We prove that the statements (1)-(7) are all equivalent
and that all of them are implied by the hypothesis of Theorem 0.1. We give examples (i) that
show that none of (1)-(7) implies the hypothesis of the theorem and examples (ii) that give t-linked
overrings that do not satisfy any of (1)-(7) and the conditions (a)-(d) of [42, page 443] which are
listed below.

(a) I−1R = (IR)−1 for every I ∈ f(D).
(b) (I−1R)vR

= (IR)−1 for every I ∈ f(D).
(c) I−1R = (IR)−1 for every I ∈ F (D).
(d) (I−1R)vR

= (IR)−1 for every I ∈ F (D).

Clearly (c) ⇒ (a) ⇒ (b) and (c) ⇒ (d) ⇒ (b). We determine the overrings of D that are
characterized by condition (b) (resp., condition (d)). If D is integrally closed, then (a) holds for
every overring R of D if and only if D is a Prüfer domain.

Let us call an extension D ⊆ R of integral domains strongly t-compatible if D ⊆ R satisfies
the hypothesis of Theorem 0.1 (i.e., if (IR)−1 = (I−1R)vR

for every I ∈ f(D), or equivalently,
condition (b) above holds). By Theorem 0.1, strong t-compatibility implies t-compatibility. We
indicate situations in which strong t-compatibility and some of its variants appear naturally, and we
characterize the domain extensions where strong t-compatibility holds. Finally, we study integral
domains D such that D ⊆ R is t-compatible for every overring R of D and relevant notions.
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