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Parametrization of integral values of polynomials
Giulio Peruginelli

Abstract
We will recall a recent result about the classification of those polynomial in one variable

with rational coefficients whose image over the integer is equal to the image of an integer
coefficients polynomial in possibly many variables. These set is polynomially generated
over the integers by a family of polynomials whose denominator is 2 and they have a
symmetry with respect to a particular axis.

We will also give a description of the linear factors of the bivariate separated polyno-
mial f(X) − f(Y ) over a number field K, which we need to formulate a conjecture for a
generalization of the previous result over a generic number field.

1. Introduction

It is classically well-known that the set of pythagorean triples in Z3 can be obtained as the
image of two 3-uples of polynomials in 3 variables with integer coefficients, as far as the variables
range through the integers. So it is quite natural to ask if a parametrization of the pythagorean
triples is possible using only one 3-uples of polynomials with integer coefficients in some number
m of variables. In 2008, Frisch and Vaserstein [FV] proved that this cannot be done, but if we
consider polynomials with rational coefficients we get a parametrization:

Theorem 1.1 (Frisch-Vaserstein, 2008). Let P = { (x, y, z) ∈ Z3 | x2 + y2 = z2 } be the set of
pythagorean triples. Then whatever m ∈ N it does not exist p = (p1, p2, p3) ∈ (Z[T1, . . . , Tm])3

such that
P = p(Zm).

On the other hand there exists f = (f1, f2, f3) ∈ (Q[T1, . . . , T4])3 such that

P = f(Z4).

Their result is completely explicit (see [FV] for details). In particular the polynomials fi are
integer-valued, that is fi(Z4) ⊂ Z. As usual we set

Int(Zm) = {f ∈ Q[X1, . . . , Xm] | f(Zm) ⊂ Z}.
Inspired by that result we give the following definitions:

Definition 1.1. Let k ≥ 1 and S ⊂ Zk. We say that:
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• S is Z-parametrizable if there exists p = (p1, . . . , pk) ∈ (Z[T1, . . . , Tm])k for some m
such that S = p(Zm).

• S is Int(Z)-parametrizable if there exists f = (f1, . . . , fk) ∈Int(Zm)k for some m such
that S = f(Zm).

So we may say that the set of pythagorean triples is Int(Z)-parametrizable but not Z-parametrizable,
and this is the first example of such a situation. If we consider the integer image of a rational
coefficient polynomial (not necessarily integer-valued) we have this result:

Theorem 1.2 (Frisch, 2008). Let h ∈ Q[X] be such that S = h(Z) ∩ Z 6= ∅. Then there exists
f ∈Int(Zm), for some m ≥ 1, such that

S = f(Zm).

Unfortunately the result is not effective, and if we let the common denominator of the coeffi-
cients of h(X) tend to infinity, then the number of variables m of the integer-valued polynomial
f(X1, . . . , Xm) tends to infinity as well. According to the above terminology, the integer image
of a rational coefficients polynomial is Int(Z)-parametrizable.

Following these results we focus our attention on those integer-valued polynomials in one
variable whose image is Z-parametrizable, that means it is equal to the image of an integer-
coefficients polynomial in possibly many variables. In [PZ] we classify such polynomials, in
section 2 we will recall that result, showing that they are polynomially generated by the family
of polynomials Bβ(X) = pkX(pkX − r)/2, for p odd prime and r odd integer, not divisible by
p. We will also recall the crucial result in order to obtain that classification (see proposition
2.1): given a rational coefficient polynomial f(X) such that for every n ∈ N there exists qn ∈ Q,
qn 6= n, such that f(n) = f(qn), then the curve {f(Y )−f(X) = 0} has a non trivial linear factor
where all the points (n, qn) except finitely many lie. More generally, given a number field K
with ring of integers OK , an integral-valued polynomial f ∈ K[X] such that for infinitely many
α ∈ OK there exists qα ∈ K, qα 6= α, such that f(α) = f(qα) we conjecture that the quasi-
integral set of points {(α, qα)} (with that I mean that the qα’s have a common denominator) of
the bivariate separated curve f(X) = f(Y ) lie in its linear components, except for finitely many
exceptions.

In section 3 we give a description of the structure of the linear factors of f(X)−f(Y ), showing
that the set of their X-leading coefficients form a finite cyclic subgroup of K∗, made by roots of
unity. In section 4 we give an easy technical result about sums of roots of unity, which we need
to define a family of integer-valued polynomials in the last section. Finally in section 5 we will
define a family of polynomials Bn,β(X) which are a generalization of the previous polynomials
in the rational case. We conjecture that these polynomials polynomially generate over OK the
set of integral-valued polynomial whose image is OK-parametrizable.

2. Main result

First we define a family of integer-valued polynomials, which polynomially generate the set of
integer-valued polynomials whose image is Z-parametrizable.

Let β ∈ Q, β = r
s , with r, s odd coprime integers and s > 0.

Bβ(X) + sX(sX − r)
2

The above polynomials enjoy these properties:
1) Bβ(X) = Bβ(−X + β)
2) Bβ ∈Int(Z)

We can rephrase the first one into the following one:

42



Parametrization of integral values of polynomials

1’) Bβ(Y )−Bβ(X) = s2

2 (Y −X)(Y +X − β)
that is, the bivariate separated polynomial Bβ(Y )− Bβ(X) has a non trivial linear factor, Y +
X − β.
Moreover, if we add the condition that s is a prime power, that is s = pk, for some k = 0, 1, . . .,
their images can be parametrized with an integer-coefficients polynomial (we can easily check
that by direct computation):

• given Bβ(X), β odd integer, we set gβ(X) + Bβ(2X); then we have gβ ∈ Z[X] and
Bβ(Z) = gβ(Z).

• given Bβ(X), β = r/pk, k ≥ 1 with r and p coprime odd integers and p prime, then if
we set

gβ(X1, X2) + Bβ(2X1 + (β − 1)(1−Xk(p−1)
2 )k)

we have that gβ ∈ Z[X1, X2] and Bβ(Z) = gβ(Z2).

Given Bβ(X) and gβ as above, if F ∈ Z[X] we have that F (Bβ(Z)) = F (gβ(Zm)), where m = 1
or 2 according to the fact that β ∈ Z or β ∈ Q \ Z, respectively. So every element in the ring
Z[Bβ(X)] is an integer-valued polynomial whose image is Z-parametrizable. As the following
theorem shows, these are the only ones. We may say that the family of polynomials {Bβ(X)}
polynomially generates over Z all integer-valued polynomials with this property.

Theorem 2.1 (P. - Zannier, 2010). Let f ∈Int(Z), f 6∈ Z[X].
Then f(Z) = g(Zm) for some m ∈ N and g ∈ Z[X1, . . . , Xm] if and only if f ∈ Z[Bβ(X)] for
some β = r

s ∈ Q such that
• r and s are odd coprime integers
• s = pk, where p is prime and k ≥ 0.

Moreover if that happens, we can choose m ∈ {1, 2}, m is equal to 1 if and only if β ∈ Z.

We remark that if such a parametrization exists, then it can be explicitly made as shown above
with a polynomial which has at most two variables. Note also that the common denominator of
an integer-valued polynomial whose image is Z-parametrizable is a power of the prime 2 and no
other prime factor can appear in the denominator. As the next proposition will show, that is
related to the number of roots of unity in Q.

In [PZ] the following crucial proposition is proved.

Proposition 2.1. Let f ∈ Q[X] be not constant. If for infinitely many integers n ∈ N there
exists q = qn ∈ Q such that f(q) = f(n) and q 6= n, then there exists a unique β ∈ Q such that
f(X) = f(β −X). Moreover qn = −n+ β for all but finitely many such n.

This means that X+Y −β is a linear factor of the bivariate separated polynomial f(X)−f(Y )
(remember that X−Y is always a linear factor of such a polynomial); moreover the points (n, qn)
of the curve f(X) = f(Y ) lie in that linear component, except for finitely many exceptions. We
recall the main steps of the proof of the main theorem.

Since f(Z) ⊃ g(Zm) then by Hilbert Irreducibility Theorem there exists a polynomial L ∈
Q[X] such that f(L(X)) = g(X), so f and g are algebraically related (see next section and
especially proposition 3.1, for another interpretation of this situation). Moreover since g has
integer coefficients and f has not, by theorem 3.1 of [PZ] we have that the integer image of L,
that is L(Zm) ∩ Z, is contained in a single residue class modulo p, where p is any prime which
divides the common denominator of f .
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From the other inclusion f(Z) ⊂ g(Zm) we have that for all n ∈ Z there exists xn ∈ Zm such
that

f(n) = g(xn) = f(L(xn))
so that (n,L(xn)) ∈ {(x, y) ∈ A2(Q) | f(x)− f(y) = 0}.

By proposition 2.1 above, for n sufficiently large we have that (n,L(xn)) annihilate the linear
factors of f(X)−f(Y ). Since over Q the number of these factors is at most 2, which is the number
of roots of unity in Q (see also next section), and by the aforementioned result of theorem 3.1 of
[PZ] there must be two linear factors and p is forced to be equal to 2. For more details see [PZ].

We conjecture that over a number field K with ring of integers OK the situation is analogous;
in that case we can have more than two linear components for the curve f(X) = f(Y ), if the
field K contains roots of unity other than ±1. So in general the q’s may distribute among several
linear components, which for symmetry reasons are strictly related one to each other, in such a
way that, by a slight abuse of language, they form a finite cyclic group (see section 3 for a study
of linear factors of a bivariate separated polynomials f(Y )− f(X) over a generic number field).

Conjecture 2.1. Let f ∈ K[X] be not constant. If for infinitely many integers α ∈ OK there
exists q = qα ∈ K such that f(q) = f(α) and q 6= α, then there exists a unique pair (ξ, β), where
ξ is a root of unity and β ∈ K such that f(X) = f(ξX + β).
Moreover {qα}α ⊂

⋃n−1
i=1 {ξiα + βi}α (except for finitely many of such α’s) where β1 = β and

βi = β1(
∑
j=0,...,i−1 ξ

j).

In other words, if we consider the curve C = Cf = {(x, y)|f(x) = f(y)}, then the points
(α, qα) of this curve lie on the linear components of C, Y − (ξiX + βi) = 0. Note that in the
case K = Q we obtain proposition 2.1.

3. Linear factors of f(X)− f(Y )

Let K be a number field and f ∈ K[X]. We want to describe the Y -linear factors that the
polynomial F (X,Y ) = f(Y ) − f(X) ∈ K[X,Y ] has over K. These correspond to the roots of
F (X,Y ) over K[X].

Suppose that Y −Q(X) is such a factor (of course Q(X) ∈ K[X], since F is monic in Y over
K[X], which is integrally closed); this means that f(Q(X)) = f(X) so in particular Q(X) has
degree 1, let us say Q(X) = cX + β1, where c, β1 ∈ K. By looking at the leading terms of the
last equation we deduce that c = ξ is a root of unity of order dividing the degree d of f . Let us
suppose that ξ = ξn has primitive order n. Since f(X) = f(ξX + β1) by iterating this formula
we have that

f(X) = f(ξX + β1) = f(ξ2X + β2) = . . . = f(ξiX + βi) = . . . = f(ξn−1X + βn−1)
where βi = β1(

∑
0≤j≤i−1 ξ

j), for i = 2, . . . , n, so that each βi for i ≥ 2 is uniquely determined
by β1 (and by the root of unity ξ). Note that βn = 0 and the set {βi}i=1,...,n has n distinct
elements (for a detailed proof of that see next section, lemma 4.1). We summarize these remarks
in the following lemma:

Lemma 3.1. Let f ∈ K[X] be a polynomial of degree d. Then every Y -linear factor of f(Y )−
f(X) over K is of the form Y − (ξX + β), for some β, ξ ∈ K where ξ is a root of unity of order
n which is a divisor of d. In particular if Y − (ξX +β) is such a factor, {Y − (ξiX +βi)}i=1,...,n
are linear factors of f(Y )−f(X), where βi = β1(

∑
0≤j≤i−1 ξ

j) is uniquely determined by β1 = β
and ξ.

Note that the lemma includes also the trivial case of the linear factor Y −X of f(Y )− f(X).
Moreover since the polynomial F (X,Y ) is separable, each of its factors appears with multiciplicity
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1. From now on we will denote by T the set of roots of F (X,Y ) over K[X]; by the above
considerations, these are polynomials of the kind ξX + β, with β, ξ ∈ K, ξ being a root of unity.
Next lemmata will show that T is indeed made by a single group of linear factors, that is, given
ξX + β, ξ′X + β′ ∈ T , we have that ξ′ = ξi and β′ = βi, for some i ∈ {1, . . . , n}. We denote by
lc(f) the leading coefficient of a polynomial f ∈ K[X].

Lemma 3.2. The set
L = { lc(f) | f ∈ T}

is a finite (hence cyclic) group of K∗.

Proof : First of all L is a finite set because so is the number of linear factors of f(Y )−f(X). It
is also not empty because for each polynomial f we always have that Y −X divides f(Y )−f(X),
so that 1 ∈ L. And if we have

f(X) = f(ξX + β) = f(ξ′X + β′)
where ξ, ξ′ are roots of unity, then we also have that

f(X) = f(ξξ′X + ξβ′ + β)
so that Y − (ξξ′X + ξβ′ + β) is a linear factor of f(Y )− f(X). In the same way we prove that
if ξ ∈ L then ξ−1 ∈ L. �

Therefore, with a little abuse of language, we can say that the set of linear factors of f(X)−f(Y )
form a finite cyclic group. The following lemma is easy to prove.

Lemma 3.3. If ξ is a root of unity of order n and β, β′ ∈ K are such that
f(X) = f(ξX + β) = f(ξX + β′)

then β = β′.

Proof : if f(X) = adX
d + ad−1X

d−1 + . . ., then the leading term of f(ξX + β)− f(ξX + β′) is
dξd−1(β − β′)Xd−1. If dξd−1(β − β′) = 0 then β = β′. �

This implies that the map T → L, which associates to ξX + β its coefficient ξ, is indeed a
bijection. In the same way we prove (using the fact that the

∑
0≤j≤i−1 ξ

j
n, for i = 0, . . . , n − 1

are n distinct elements, see next section, lemma 4.1):

Lemma 3.4. If ξ, ξ′ are roots of unity and β ∈ K are such that
f(X) = f(ξX + β) = f(ξ′X + β)

then ξ = ξ′.

Suppose now that f(OK) = g(OmK), for some g ∈ OK [X1, . . . , Xm]. Let us write down the
factorization over K of the polynomials f(Y )− f(X) and f(Y )− g(X1, . . . , Xm) = f(Y )− g(X):

f(Y )− f(X) = B(X,Y )
n∏
i=1

(Y − (ξinX + βi))(3.1)

f(Y )− g(X) = Q(X,Y )
k∏
j=1

(Y − Lj(X))(3.2)

where B(X,Y ) is the product of all the irreducible factors of Y -degree greater or equal to 2
and the same for Q(X,Y ) (note that k ≥ 1 by Hilbert Irreducibility Theorem). We want to
compare the linear factors which appears in (3.1) on with the linear factors in (3.2). We denote
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as before with T the set of roots of f(Y )− f(X) in K[X], and we denote by Ω the set of roots
of f(Y )− g(X) in K[X]:

T +{ξinX + βi}i=1,...,n

Ω +{Lj(X)}j=1,...,k

The next proposition shows that there is a bijection between T and Ω, or equivalently n = k.

Proposition 3.1. Suppose that f(OK) = g(OmK), for some g ∈ OK [X1, . . . , Xm]. Then the
number of Y -linear factors in the factorization over K of f(Y )− f(X) is equal to the number of
Y -linear factors in the factorization over K of f(Y )− g(X).

So under the (important!) assumption that f and g share the same image over the integers,
the number of Y -linear factors of f(Y )− f(X) and f(Y )− g(X) is the same.

Proof : as we said, it follows from Hilbert Irreducibility Theorem that Ω is not empty; let us
fix L1(X) ∈ Ω. Let us denote li(X) = ξiX + βi, for i = 1, . . . , n. Let us define the following
application

Φ :T → Ω
li(X) 7→ li(L1(X)) = ξiL1(X) + βi

The map Φ is well defined: f(X) = f(li(X)) implies f(L1(X)) = f(li(L1(X))) and g(X) =
f(L1(X)).
Injectivity: if Φ(li1) = Φ(li2) then ξi1L1 + βi1 = ξi2L1 + βi2 . If ξi1 6= ξi2 then we have L1 =
(β2 − β1)/(ξi1 − ξi2), which is constant, contradiction. So we have that ξi1 = ξi2 which implies
li1 = li2 .
Surjectivity: it follows from the next proposition: if L ∈ Ω, L 6= L1 then L = ξL1 + β, for some
root of unity ξ in K and β ∈ K such that f(X) = f(ξX + β). Then Φ(ξX + β) = L. �

The following proposition is a generalization of proposition 2.2 of [PZ] and the proof is exactly
the same as the one which appears in [PZ].

Proposition 3.2. Let f ∈ K[X] be nonconstant and let R,S ∈ K[X] be also nonconstant and
such that f(R) = f(S). Then either R = S or R = ξS + β for some root of unity ξ in K and
β ∈ K such that f(X) = f(ξX + β) identically, and in this case β is uniquely determined by f .

4. Sums of roots of unity

Let ξ = ξn be a primitive root of unity in K of order n. We define

ζi +
i−1∑
j=0

ξj

for i = 1, . . . , n. These are elements of the ring of integers OK of K. Note that ζn = 0.

We need the following lemma, the proof is due to Chirivi.

Lemma 4.1. For each i < n we have that ζi 6= 0.

Proof : Without loss of generality we may suppose that ξ = e2πi/n. Suppose by contradiction
that there exists d > 0 such that ζd = 0; let such a d be the minimum with that property. Write
n = qd+ r with 0 ≤ r < d. If 0 < r then

0 = ζn = ζd(1 + ξd + ξ2d + . . .+ ξqd) + ξqdζr
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since ζd = 0 then ζr = 0 but this is not possible since d is the minimum with that property. So
d|n, which in particular implies that d ≤ n/2. Then Im(ξk) > 0 for each 0 < k < d, because ξk
lies in the upper plane, so Im(ζd) > 0 unless d = 1. But in that case ζ1 = 1 6= 0. �

We also have the following relations (suppose i > k), which can be proved directly:

ζi − ζk = ξkζi−k(4.1)
ξζi = ζi+1 − 1(4.2)

Let v be a finite valuation of K; note that ζi ∈ Ov, the valuation ring of v. Let us define

ı = ı(v, ξn) + min{i ∈ {1, . . . , n} | v(ζi) > 0}.

Note that this minimum exists, since ζn = 0; moreover by construction we obviously have that
2 ≤ ı ≤ n. We have that

Properties
i) if i1 6= i2 ∈ {1, . . . , ı}, then ζi1 6≡ ζi2 (mod v) (that is v(ζi1 − ζi2) = 0).
ii) v(ζkı) > 0 for each k > 0,
iii) if i ∈ {1, . . . , ı− 1} then ζi ≡ ζkı+i (mod v) for each k > 0,
iv) ı divides n.

To prove i) we suppose i1 < i2; it is sufficient to note that ζi2 − ζi1 = ξi1ζi2−i1 , by (4.1). If
v(ζi1 − ζi2) > 0 then v(ζi2−i1) > 0 but this is not possible since 0 < i2 − i1 < ı.
To prove ii), we note that ζı ≡ 0 (mod v)⇒ ξζı ≡ 0 (mod v), so ζı+1 − 1 ≡ 0 (mod v) by (4.2)
above. We get

ζı+1 ≡ 1 = ζ1 (mod v)
ξζı+1 ≡ ξζ1 (mod v)

ζı+2 − 1 ≡ ζ2 − 1 (mod v)
ζı+2 ≡ ζ2 (mod v)

. . .

ζı+h ≡ ζh (mod v)

for each h = 1, . . . , ı− 1. Hence it follows ζkı ≡ ζı ≡ 0 (mod v). In the same way we prove iii).
Finally for property iv), let n = qı + r, with 0 ≤ r < ı. Since 0 = ζn = ζqı+r ≡ ζr (mod v) by
iii), this implies r = 0, by minimality of ı.

In particular property i) implies that there are exactly ı distinct residue classes modulo v
among the {ζi}i=1,...,n, so that we always have ı ≤ N(v), where N(v) is the cardinality of the
residue field of v.

5. A family of bivariate separated polynomials with n distinct linear factors

Let v be a finite valuation of a number field K with uniformizer π, and let us denote αv the
residue of an integral element α ∈ OK modulo v. Given γ1 a v-unit, that is v(γ1) = 0, and ξ = ξn
a primitive n-th root of unity in K, we define

γi + ζiγ1 = (
i−1∑
j=0

ξj)γ1
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for i = 1, . . . , n. Note that γn = 0. By properties i) and iii) of the previous section we have that
ı(v, ξn) = #{(γi)v}i=1,...,n.

We define the following family of polynomials in K[X], where β + γ1/γ, γ is another v-unit:

(5.1) Bn,β(X) + 1
π

n∏
i=1

(γX − γi).

Note that by construction we have that
(5.2) Bn,β(X) = Bn,β(ξiX + βi)
where βi = γi/γ, for i = 1, . . . , n. Note again that this last property corresponds to the fact that
Bn,β(Y )−Bn,β(X) has exactly n linear factors, namely Y − (ξiX + βi).

From now on we suppose that OK is a unique factorization domain, so in particular we may
suppose π, γ, γ1 ∈ OK . In this way the polynomial Bn,β(X) is written as a ratio of a polynomial
in OK [X] over a non-zero element of OK . Under this assumption we have that

Lemma 5.1. Bn,β(X) ∈ Int(OK) if and only if ı(v, ξn) = N(v).

Proof : This follows from ı(v, ξn) ≤ N(v) and the fact that ı(v, ξn) = #{(βi)v} = #{(γi)v}, as
we have just seen (more precisely there are ı distinct residue classes modulo v of such βi’s and
by definition there are N(v) residue classes modulo v). If ı < N(v) (as for example when the
order n of ξ is less than the cardinality N(v) of the residue field at v so that ı(v, ξn) ≤ n < N(v))
the polynomials Bβ,n(X) are not integer-valued, since there are elements of OK which are sent
by the numerator of the polynomial Bn,β into elements which are not congruent to zero modulo
π (just pick up an element in the remaining N(v) − ı(v, ξn) residue classes modulo v). Note
that the multiplication by a v-unit γ has the effect to permute the residue classes modulo v,
so we immediately see from the definition of the polynomials Bn,β(X) in (5.1) that they are
integral-valued if and only if {γi}i=1,...,n covers all the N(v) residue classes modulo v.�

Note that the condition of the lemma is satisfied in the rational case for the root of unity −1
only for the valuation 2, as we have already seen in the second section.

Given a polynomial f ∈ K[X] we denote by Ωf the finite set of finite valuation v of K such
that the Gauss norm ‖ ‖v relative to v of f is greater than 1. As usual ξn denotes a primitive
n-th root of unity andMv the maximal ideal of OK associated to v.

Conjecture 5.1. Let K be a number field such that OK is a unique factorization domain. Let
f ∈ Int(OK), f 6∈ OK [X]. Then f(OK) is OK-parametrizable if and only if there exist ξn ∈ K,
γ, γ1 ∈ OK \Mv for some v ∈ Ωf such that f ∈ OK [Bn,β(X)] with β = γ1/γ and moreover

• for such a v we have ı(v, ξn) = N(v) ≤ n
• the number of finite valuation v of K such that v(γ) < 0 is less than n.

We believe that the if part should be relatively easy to prove. For example in the case γ ∈ O∗K
(a global unity), we have that Bn,β(πX) parametrizes the integral values of Bn,β(X). If γ is
not in O∗K we are forced to look for a polynomial in more than one variable to parametrize the
integral values of Bn,β .
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