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The structure of abelian groups supporting a
number system (extended abstract)

Christiaan van de Woestĳne

1. Introduction and results

A number system is a coherent notation system for numbers. There are many possibilities to
define such systems, but in this paper we will consider only generalisations of the positional number
systems, like the binary and decimal notations. In such systems, one represents numbers by finite
expansions of the form

(1.1) a =
∑̀
i=0
dib
i,

where the di are taken from a finite set of digits, and b is the base of the system. For example,
taking for b an integer greater than 1 and using digits {0, 1, . . . , b−1}, we can represent all natural
numbers in the form (1.1), and these representations are in fact unique. However, if we want to
represent all integers in this form, we must change either the base or the digit set; for example,
we can take an integer base b with b ≤ −2, and digits {0, 1, . . . , |b| − 1}.

Looking for the most general sets of “numbers” in which we could possibly represent all elements
finitely in the form (1.1) using only a finite digit set, we arrive at the following definitions, which
are a generalisation of those given in [7], for example.

Definition 1.2. A pre-number system in an abelian group V is given by an homomorphism
φ : V → V and a finite set D ⊆ V , such that the elements of D cover all the cosets of V modulo
φ(V ).

The endomorphism φ is called the base of the pre-number system, and D is the digit set. If
|D| = |V/φ(V )|, we say that D is irredundant, otherwise it is redundant.

A pre-number system (V, φ,D) is a number system if every v ∈ V has a finite expansion of the
form

v =
∑`−1
i=0 φ

i(di)
where all di are in D and where ` is a positive integer.

If (V, φ,D) is a number system, we call D a valid digit set for the pair (V, φ).

Note that the definition of a pre-number system implies that the image φ(V ) of V under φ is a
subgroup of finite index in V .

Note also that it is possible to define number systems in the same way in non-abelian groups,
and examples of this, using crystallographic groups as the underlying group, have been given by
Loridant et al. [8]. In this paper, however, we will restrict ourselves to abelian groups.

In order to define more familiar number systems using Definition 1.2, one should think of the
group V as the set of numbers to be represented, and of the endomorphism φ as the base of the
number system. If the base is just some number b, then define φ as the map that multiplies a
given element of V by b.

If one takes just V = Z, we recover the well-known b-ary notation of integers, for an integer b
with |b| ≥ 2, if we let φ be multiplication by b, and take the digits {0, . . . , |b| − 1}.
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More generally, we may take an algebraic integer α as the base, with V = Z[α] and D =
{0, 1, . . . , |Norm(α)| − 1}. Again, we define φ as multiplication by α. This system, if it has the
required properties, is a canonical numeration system in the terminology of [4, Section 3.1]. In
order to have a pre-number system, all the complex embeddings of α must have absolute value
greater than 1.

Finally, if f is any monic nonconstant univariate polynomial over Z, we can take (V, φ,D) to be
Z[X]/(f) with multiplication by X, and digits {0, 1, . . . , |f(0)|−1}. If this triple satisfies Definition
1.2, the polynomial f is called a CNS polynomial in [9]. The problem of characterising all CNS
polynomials is as yet unsolved, even for degree 2, in spite of efforts by many authors.

Conforming to the general analogy between rings of integers (Z, or orders in number fields)
and orders in function fields of curves over finite fields, it is possible to define number systems in
the function field case as well (see [4, Section 3.5] or [10]). The simplest case is where V is the
polynomial ring Fq[x] itself, the base is any nonconstant polynomial f ∈ Fq[x], and the digits are
simply all polynomials g with degree less than deg f .

The next simplest case results by taking V = Fq[y][x]/(P ), where P = pdxd + . . . + p1x + p0
with pi ∈ Fq[y] and pd = 1, taking base x mod P , and taking as digits all g ∈ Fq[y] with degree
less than degy(P (0)). It is proved in [10] that this construction gives a number system if and only
if max1≤i≤d deg(pi) < deg(p0).

One notes that in the last cases, V is a torsion group: all elements have additive order p, where
p is the characteristic of the field Fq.

The main question of this note is whether we will get something structurally new if we allow
mixed groups, i.e., base groups V that have both torsion and torsion-free elements.

2. Conditions on the group structure

If a group V has a number system defined on it, this puts quite a number of restrictions on
the group structure of V . We will show several such properties in the remainder of this extended
abstract.

We use the following concepts and results from the theory of abelian groups; see [5] for more
details.

An element x of a group V is p-divisible for a prime number p if the equation py = x is solvable
in V , and divisible if it is p-divisible for all p. The group V itself is p-divisible or divisible if all
its elements are. If a group has no divisible elements, it is called reduced. Every group can be
embedded in a smallest divisible group, called its divisible hull or division group. For torsion-free
V , the divisible hull is equal to V ⊗Q. Every endomorphism φ : V → V can be uniquely extended
to the divisible hull. Every group splits as a direct sum of a divisible group and a reduced group.

The torsion subgroup of a group V will be written V tor; recall that V/V tor is torsion-free. The
rank (or torsion-free rank) of a group V is defined as the dimension of V ⊗Q as a Q-vector space,
and is written rk V . It is equal to the cardinality of a maximal linearly independent subset of
V/V tor. For every prime p, the set of elements of V that have p-power order is a subgroup Vp,
called the p-component of V . The torsion subgroup V tor of V is the direct sum of the p-components
of V for all p. A torsion group is called bounded when the orders of its elements are bounded, in
other words, when the group has a nontrivial annihilator in Z.

A subgroupW of a V is pure in V if, for every x ∈W and n ∈ Z the equation ny = x is solvable
within W whenever it is solvable in V . If V is torsion-free, then W is pure if and only if V/W is
torsion-free.

We will say that V supports a number system if V is the first component of any number system
(V, φ,D), where we expressly allow redundant digit sets D. The question is, what properties of V
can be proved assuming that V supports a number system.

We conjecture the following.

Conjecture 2.1. Suppose that the abelian group V supports a number system. Then we have

V =W ⊕ T,

where T is a bounded torsion group andW is torsion-free of finite rank, and has p-divisible quotients
for at most finitely many primes p.
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Below, we will show some parts of this conjecture, where we leave the full technical details
for a future publication. A full proof seems out of reach at the moment, due to the difficulty of
classifying torsion-free groups of finite rank; see [2].

The main part, and the one which remains to prove, is the question whether the torsion subgroup
T of V is indeed a direct summand; in other words, whether the (possibly) mixed group V splits.
If we knew that only split groups V can support a number system, this knowledge will allow the
classification of number systems to follow separate paths of torsion groups and torsion-free groups.

For a general abelian group V , this question has been studied by many authors, starting with
Baer [3]; an overview is given in Chapter XIV of [6]. The simplest criteria for splitting unfortunately
do not work: from the assumption that V supports a number system, we cannot infer that V tor is
bounded, nor that V/V tor is free; either of these would have sufficed for our purpose [6, Theorems
100.1 and 101.1].

We give an example where the torsion-free part W is not finitely generated, and hence is not
free. Consider the number system (Z[1/2]+, 5/2, {−2,−1, 0, 1, 2}). To see that this is a number
system, one first notes that multiplication by 5/2 is an endomorphism of the additive group of
Z[1/2], whose image is a subgroup of index 5. Let a/2e ∈ Z[1/2], and let d be the smallest integer
(in absolute value) congruent to a/2e modulo 5; we have |d| ≤ 2. Then a has a finite expansion if
and only if T (a) does, where we define

T (a) = a/2
e − d

5/2
=
a−2ed

5
2e−1 .

After repeating this process sufficiently often, we may assume that a ∈ Z, and showing that the
integers have an expansion on base 5/2 with the given digits is easy (see also [1], with the difference
that the presence of negative digits allows negative integers to be represented as well).

The group Z[1/2]+ is 2-divisible and therefore infinitely generated, and it is clearly not free:
any two elements are linearly dependent over Z.
Baer’s criterion. The way we propose to prove that a group V supporting a number system must
split is Baer’s splitting criterion, proved in [3] and cited as Exercises 101.5 and 101.6 in [6].

Theorem 2.2. (Baer) Let T be a torsion group and W a countable torsion-free group (both
abelian). Then every group V with V tor ∼= T and V/V tor ∼=W splits, if and only if:

(i) if p1, . . . , pi, . . . is an infinite set of different primes for which piT is strictly contained in
T , then W contains no pure subgroup S of finite rank such that G/S has elements 6= 0
divisible by all pi;

(ii) if for some prime p, the reduced part of the p-component of T is unbounded, then W
contains no pure subgroup S of finite rank such that G/S has elements 6= 0 divisible by all
powers of p.

The first aspect to settle is the cardinality of V .

Lemma 2.3. If V supports a number system, then V is countable.

Proof. Let (V, φ,D) be a number system; then the set D∗ of finite words over the finite alphabet D
maps surjectively to V via the evaluation map (d0, d1, . . . , dn) 7→

∑n
i=0 φ

i(di). As D∗ is countable,
so is V .

Lemma 2.4. Every number system (V, φ,D) induces a number system on V/W for any φ-invariant
subgroup W of V .

Proof. Clearly, there is an induced endomorphism φ̄ : V/W → V/W . Having this, we see that
every expansion

∑n
i=0 φ

i(di) with digits in D is mapped to an expansion
∑n
i=0 φ̄

i(di +W ).
Remark. Note that the induced number system on the quotient will usually have a redundant digit
set.

Corollary 2.5. If V supports a number system, then so does V/V tor.

Proof. The torsion subgroup V tor is invariant under any endomorphism of V , so the lemma is
applicable whenever we have a number system (V, φ,D).

Lemma 2.6. If V supports a number system and is a torsion group, then V is bounded.
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Proof. Let (V, φ,D) be a number system, and let x ∈ V have the expansion x =
∑n
i=0 φ

i(di), with
di ∈ D. The order of φi(di) divides that of di, and the order of a sum in V divides the least
common multiple of the orders of the summands. This means that the order of x is bounded by
the l.c.m. of the orders of the digits.

Lemma 2.7. If V supports a number system and is torsion-free, then rk V is finite.

Proof. Let (V, φ,D) be a number system on V , and let D = [V : φ(V )]. Then for every x ∈ V , we
have Dx ∈ φ(V ). In particular, if d ∈ D, then Dd = φ(d′) for some d′ ∈ V . By our assumption,
there exists a finite expansion

d′ =
`−1∑
i=0
φi(di) (di ∈ D)

of length `, so that

Dd = φ(d′) =
∑̀
i=1
φi(di−1).

Let L ∈ N be such that all Dd, for d ∈ D, have expansions of length at most L, and consider the
finitely generated subgroup

W = 〈φi(d) | d ∈ D, 0 ≤ i ≤ L− 1〉 ⊆ V.
Then φ(W ) contains φi(d) for all d ∈ D and 1 ≤ i ≤ L, so it also contains Dd for all d ∈ D. By
the linearity of φ, we find that DW ⊆ φ(W ).

Passing to divisible hulls, we see that W ⊗ Q ⊆ φ(W ) ⊗ Q, and because dim(φ(W ) ⊗ Q) =
rk(φ(W )) ≤ rk(W ) = dim(W ⊗ Q), the inclusion is in fact an equality. Because furthermore
φ(W )⊗Q = φ(W ⊗Q) for torsion-freeW , we find thatW ⊗Q is invariant under the corresponding
extension of φ. In particular, φi(d), for every i ≥ 0 and every d ∈ D is contained in W ⊗ Q, and
by assumption this means that V ⊆ W ⊗ Q. Because W is finitely generated, this shows that V
has finite rank, and in fact rk V ≤ L · |D|.
Remark. This proof is due to Ryotaro Okazaki.

The following result shows that part (i) of Baer’s criterion is always satisfied for groups sup-
porting a number system. The proof uses the theory of types, as well as the fact that by the
previous lemma, the endomorphism on V/V tor induced by φ is a restriction of a Q-linear map on
a finite-dimensional Q-vector space.

Lemma 2.8. If V supports a number system, then no torsion-free quotient of V has elements 6= 0
that are divisible by p, without being p-divisible, for infinitely many distinct primes p.

The final result is a first approximation of a proof of part (ii) of Baer’s criterion. First, we show
that if V supports a number system, it can be covered by the images of successive application
of the endomorphism φ to the subgroup of V generated by the digits; if V is torsion-free, this
subgroup is free.

Lemma 2.9. Let (V, φ,D) be a number system. Let W be the subgroup of V generated by D, and
define V0 =W , Vi+1 = Vi ⊕ φ(Vi) for i = 1, 2, . . .. Then

∪∞i=0Vi = V.

Proof. Trivial.
Next, we show that for one of the archetypal nonsplitting mixed groups, we can prove that

endomorphisms that cover the torsion free quotient as described in the lemma do not lift to the
mixed group, showing that the mixed group does not support a number system.

Definition 2.10. [6, Chap. XIV, Sec. 100, Example 3] For some prime p, let Tp = ⊕∞i=1〈ai〉,
where for each i = 1, 2, . . ., the element ai is torsion of order p2i. Also for each i, define

bi = (0, . . . , 0, ai, pai+1, p
2ai+2, . . .) ∈

∞∏
i=1
〈ai〉.

Now let Ap = 〈Tp, b1, b2, . . .〉.

Lemma 2.11. For each p, the torsion part Tp of the group Ap is not a direct summand.
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Proof. The bi, as defined above, are of infinite order and satisfy pbi+1 = bi − ai for i = 1, 2, . . ..
Using these relations, it is readily checked that Tp is the torsion part of Ap.

If we had Ap = Tp⊕G for some subgroup G of Ap, then because pbi+1 ≡ bi mod Tp, the group
G would be p-divisible, contrary to the fact that

∏
〈ai〉 has no p-divisible subgroups 6= 0.

Theorem 2.12. Let p be a prime, and define the group Ap as in Definition 2.10. Then the image
of the natural map End(Ap)→ End(Ap/Tp) ∼= Z[1/p] is just Z.

This result has an immediate bearing on the existence of number systems.

Theorem 2.13. Let p be a prime, and let the group Ap be as in Definition 2.10. Then Ap does
not support a number system.

Proof. Let φ be an endomorphism of Ap whose image has finite index in Ap, and suppose (Ap, φ,D)
is a number system for some finite subset D ⊆ Ap.

By Lemma 2.4, we have an induced number system on the torsion free quotient Ap/Tp ∼=
Z[1/p]+. In particular, the powers of the induced endomorphism φ fill up the whole group Z[1/p]+,
as described in Lemma 2.9. If φ is multiplication by n/pe, we clearly must have e ≥ 1 for this to
happen. But this contradicts Theorem 2.12.

We hope to prove an analogous result for any nonsplit group of torsion-free rank 1, using the
classification of rank-1 mixed groups given in [6, Section 104]. For higher ranks, such a classification
seems to be nowhere in sight, and we expect that a full proof of our conjecture will have to wait
for further progress in this direction.
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