The purpose of my talk is to give an overview of some more or less recent developments on integer-valued polynomials and, doing so, to emphasize that integer-valued polynomials really occur in different areas: combinatorics, arithmetic, number theory, commutative and non-commutative algebra, topology, ultrametric analysis, and dynamics. I will show that several answers were given to open problems, and I will raise also some new questions.
@article{ACIRM_2010__2_2_3_0, author = {Jean-Luc Chabert}, title = {An overview of some recent developments on integer-valued polynomials: {Answers} and {Questions}}, journal = {Actes des rencontres du CIRM}, pages = {3--14}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.27}, zbl = {06938575}, language = {en}, url = {https://acirm.centre-mersenne.org/articles/10.5802/acirm.27/} }
TY - JOUR AU - Jean-Luc Chabert TI - An overview of some recent developments on integer-valued polynomials: Answers and Questions JO - Actes des rencontres du CIRM PY - 2010 SP - 3 EP - 14 VL - 2 IS - 2 PB - CIRM UR - https://acirm.centre-mersenne.org/articles/10.5802/acirm.27/ DO - 10.5802/acirm.27 LA - en ID - ACIRM_2010__2_2_3_0 ER -
%0 Journal Article %A Jean-Luc Chabert %T An overview of some recent developments on integer-valued polynomials: Answers and Questions %J Actes des rencontres du CIRM %D 2010 %P 3-14 %V 2 %N 2 %I CIRM %U https://acirm.centre-mersenne.org/articles/10.5802/acirm.27/ %R 10.5802/acirm.27 %G en %F ACIRM_2010__2_2_3_0
Jean-Luc Chabert. An overview of some recent developments on integer-valued polynomials: Answers and Questions. Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 3-14. doi : 10.5802/acirm.27. https://acirm.centre-mersenne.org/articles/10.5802/acirm.27/
[1] M. Ably, Fonctions entières à valeurs dans un corps de nombres, Bull. Soc. Math. France 139 (2011), 243–270. | DOI | Zbl
[2] D. Adam, Car-Pólya and Gel’fond’s theorems for , Acta Arith. 115 (2004), 287-303. | DOI | Zbl
[3] D. Adam, Simultaneous orderings in function fields, J. Number Theory 112 (2005), 287–297. | DOI | MR | Zbl
[4] D. Adam, Pólya and Newtonian function fields, Manuscripta Math. 126 (2008), 231–246. | DOI | Zbl
[5] D. Adam, J.-L. Chabert, and Y. Fares, Subsets of with simultaneous orderings, Integers 10 (2010), 435–451. | DOI | MR | Zbl
[6] D. Adam and N. Hirata-Kohno, Almost integer-valued functions in positive characteristic, Diophantine analysis and related fields, 2006, 1–10, Sem. Math. Sci., 35, Keio Univ., Yokohama, 2006. | Zbl
[7] Y. Amice, Interpolation -adique, Bull. Soc. Math. France 92 (1964) 117–180. | DOI | Numdam | Zbl
[8] D. Barsky, Fonctions -lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. Math. France 101 (1973), 397–411. | DOI | Numdam | Zbl
[9] M. Bhargava, -orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127. | DOI | MR | Zbl
[10] M. Bhargava, Generalized Factorials and Fixed Divisors over Subsets of a Dedekind Domain, J. Number Theory 72 (1998), 67–75. | DOI | MR | Zbl
[11] M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), 783–799. | DOI | MR | Zbl
[12] M. Bhargava, On -orderings, rings of integer-valued polynomials, and ultrametric analysis, J. Amer. Math. Soc. 22 (2009), 963Ð993. | DOI | MR | Zbl
[13] M. Bhargava, P.-J. Cahen, and J. Yeramian, Finite generation properties for rings of integer-valued polynomials, J. Algebra 322 (2009), 1129–1150. | DOI | MR | Zbl
[14] M. Bhargava and K. S. Kedlaya, Continuous functions on compact subsets of local fields, Acta Arith. 1999, 191–198. | DOI | MR | Zbl
[15] J. Boulanger and J.-L. Chabert, Asymptotic behavior of characteristic sequences of integer-valued polynomials, J. Number Theory 80 (2000), 238–259. | DOI | MR | Zbl
[16] J. Brewer and L. Klinger, Rings of Integer-Valued Polynomials and the bcs-Property, Commutative Ring Theory and Applications, 65–75, Lecture Notes in Pure and Appl. Math. 231, Dekker, New York, 2003. | DOI
[17] D. Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials, Comm. Algebra 7 (1979), 1065–1077. | DOI | Zbl
[18] P.-J.Cahen, Dimension de l’anneau des polynômes à valeurs entières, Manuscripta Math., 67 (1990), 333–343. | DOI | MR | Zbl
[19] P.-J. Cahen, Polynomial closure, J. Number Theory 61 (1996), 226–247. | DOI | MR | Zbl
[20] P.-J. Cahen, Newtonian and Schinzel sequences in a domain, J. Pure Appl. Algebra 213 (2009), 2117–2133. | DOI | MR | Zbl
[21] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Amer. Math. Soc. Surveys and Monographs 48, Povidence, R.I., 1997. | DOI
[22] P.-J. Cahen and J.-L. Chabert, On the ultrametric Stone-Weierstrass theorem and Mahler’s expansion , J. Théorie des Nombres Bordeaux, 14 (2002), 43-57. | DOI | Numdam | MR | Zbl
[23] P.-J. Cahen, J.-L. Chabert, and K.A. Loper, High dimension Prüfer domains of integer-valued polynomials, J. Korean Math. Soc., 38 (2001), 915–935. | Zbl
[24] M. Car, Pólya’s theorem for , Acta Arith. 69 (1995), 229–242. | DOI
[25] M. Car, Entire functions and integer-valued polynomials in positive characteristic, Third International Meeting on Integer-Valued Polynomials, C.I.R.M., Marseille, Nov.-Dec. 2010.
[26] J.-L. Chabert, Anneaux de polynômes à valeurs entières et anneaux de Fatou, Bull. Soc. math. France 99 (1971), 273–283 . | DOI | Numdam | Zbl
[27] J.-L. Chabert, Integer-valued polynomials on prime numbers and logarithm power expansion, European J. Combinatorics 28 (2007), 754–761. | DOI | MR | Zbl
[28] J.-L. Chabert, On the polynomial closure in a valued field, J. Number Theory 130 (2010), 458–468. | DOI | MR | Zbl
[29] J.-L. Chabert, Does have the stacked basis property?, Arabian J. Math., to appear. | DOI | MR
[30] J.-L. Chabert, Dynamical systems and -orderings, preprint.
[31] J.-L. Chabert and P.-J. Cahen, Old Problems and New Questions around Integer-Valued Polynomials and Factorial Sequences, in Multiplicative Ideal Theory in Commutative Algebra, Springer 2006, 89-108. | DOI | Zbl
[32] J.-L. Chabert, S. Chapman and W. Smith, A Basis for the Ring of Polynomials Integer-Valued on Prime Numbers, in Factorization in Integral Domains, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997, 271–284. | DOI | Zbl
[33] J.-L. Chabert, S. Evrard, and Y. Fares, Regular subsets of valued fields and Bhargava’s -orderings, preprint. | DOI | MR | Zbl
[34] J.-L. Chabert, A.-H. Fan, and Y. Fares , Minimal dynamical systems on a discrete valuation domain, Discrete Contin. Dyn. Syst. 35 (2009), 777–795. | DOI | MR | Zbl
[35] L. Delamette, Théorème de Pólya en caractéristique finie, Acta Arith. 106 (2003), 159–170. | DOI | Zbl
[36] S. Evrard and Y. Fares, -adic subsets whose factorials satisfy a generalized Legendre formula, Bull. London Math. Soc., 40 (2008), 37-50. | DOI | Zbl
[37] M. Fontana, L. Izelgue, S. Kabbaj, and F.Tartarone, On the Krull dimension of domains of integer-valued polynomials, Expo. Math., 15 (1997) 433–465. | Zbl
[38] M. Fontana and S. Kabbaj, Essential domains and two conjectures in dimension theory, Proc. Amer. math. Soc., 123 (2004), 2529–2535. | DOI | MR | Zbl
[39] S. Frisch, Substitution and closure of sets under integer-valued polynomials, J. Number Theory 56 (1996), 396–403. | DOI | MR | Zbl
[40] S. Frisch, Polynomial separation of points in algebras, in Arithmetical Properties of Commutative Rings and Monoids, S. Chapman ed., Dekker, 2005, 249–254. | DOI | Zbl
[41] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Amer. Math. Soc. Surveys and Monographs 84. A.M.S., Providence, 2001. | Zbl
[42] R. Gilmer, Sets that determine integer-valued polynomials, J. Number Theory 33 (1989), 95–100. | DOI | MR | Zbl
[43] F. Gramain, Sur le théorème de Fukusawa-Gel’fond, Invent. Math. 63 (1981), 495–506. | DOI | Zbl
[44] K. Johnson, The invariant subalgebra and anti-invariant submodule of , J. K-theory 2 (2008), 123–145. | DOI | MR | Zbl
[45] K. Johnson, -orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics 30 (2009), 233–255. | DOI | MR | Zbl
[46] K. Johnson, Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), 2933–2942. | DOI | MR | Zbl
[47] I. Kaplansky, The Weierstrass theoremin fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356–357. | DOI | MR | Zbl
[48] A. Leriche, J. Théor. Nombres Bordeaux 23 (2011), 235-249. | DOI
[49] A. Leriche, Pólya fields, Pólya groups and PÊólya extensions: a question of capitulation, Ph.D. Thesis, Université de Picardie, Dec. 2010.
[50] K. Mahler, An Interpolation Series for Continuous Functions of a -adic Variable, J. Reine Angew. Math. 199 (1958), 23–34 and 208 (1961), 70–72. | DOI | MR | Zbl
[51] A. Mingarelli, Abstract Factorials of arbitrary Sets of Integers, arXiv: 0705.4299v1, 29 may 2007.
[52] H. Minkowski, Zur Theorie der quadratischen Formen, J. Reine Angew. Math. 101 (1897), 196–202. | DOI | MR
[53] A. Ostrowski, Ueber ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math. 149 (1919), 117–124. | DOI | Zbl
[54] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Zeitschrift 39 (1935), 269–404. | DOI | Zbl
[55] M.H. Park, Polynomial closure in essential domains, Manuscripta Math. 117 (2005), 29–41. | DOI | MR | Zbl
[56] G. Pólya, Ueber ganzwertige ganze Funktionen, Rend. Circ. Matem. Palermo 40 (1915), 1–16. | DOI | Zbl
[57] G. Pólya, Ueber ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math. 149 (1919), 97–116. | DOI | Zbl
[58] I. Schur, Über eine Klasse von endlichen Gruppen linearer Substitutionen, Sitzungsber. Preuss. Akad. Wiss. (1905), 77–91. | Zbl
[59] M.-J. Strong and S. Whitehouse, Integer-valued polynomials and K-theory operations, Proc. Amer. Math. Soc. 138 (2010), 2221-2233. | DOI | MR | Zbl
[60] F. Tartarone, Polynomial closure in Noetherian pseudo-valuation domains, Comm. Algebra 31 (2003), 5431–5446. | DOI | MR | Zbl
[61] F. J. Van Der Linden, Integer valued polynomials over function fields, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), 293–308. | DOI | MR | Zbl
[62] N. Werner, Integer-Valued Polynomials over Quaternions Rings, J. Algebra 324 (2010), 1754–1769. | DOI | MR | Zbl
[63] M. Wood, -orderings: a metric viewpoint and the non-existence of simultaneous orderings, J. Number Theory 99 (2003), 36–56. | DOI | MR | Zbl
[64] J. Yeramian, Anneaux de Bhargava, Comm. in Algebra 32 (2004), 3043-3069. | DOI | MR | Zbl
[65] J. Yeramian, Anneaux de Bhargava, Ph.D. Thesis, Marseille, 2004.
[66] H. Zantema, Integer valued polynomials over a number field, Manuscr. Math. 40 (1982), 155–203. | DOI | MR | Zbl
[67] 1990: Integer-Valued Polynomial Encounter, CIRM 11-12 December 1990, Laboratoire de Mathématiques URA CNRS 225, Marseille, Prépublication n 91-17.
[68] 2000: http://www.cirm.univ-mrs.fr/liste_rencontre/archives/Rencontres2000/Cahen2000.html | DOI
[69] 2010: http://www.lamfa.u-picardie.fr/evrard/colloqueIVP/index.htm
Cited by Sources: