Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières

Rencontre organisée par :
Sabine Evrard

29 novembre-3 décembre 2010

Valentina Barucci and Faten Khouja
Irreducibility of ideals in a one-dimensional analytically irreducible ring

<http://acirm.cedram.org/item?id=ACIRM_2010__2__2_91_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) FRANCE
Irreducibility of ideals in a one-dimensional analytically irreducible ring

Valentina Barucci and Faten Khouja

Abstract

Let \(R \) be a one-dimensional analytically irreducible ring and let \(I \) be an integral ideal of \(R \). We study the relation between the irreducibility of the ideal \(I \) in \(R \) and the irreducibility of the corresponding semigroup ideal \(v(I) \). It turns out that if \(v(I) \) is irreducible, then \(I \) is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition of a nonzero ideal.

A numerical semigroup is a subsemigroup of \(\mathbb{N} \), with zero and with finite complement in \(\mathbb{N} \). The numerical semigroup generated by \(d_1, \ldots, d_v \in \mathbb{N} \) is \(S = \langle d_1, \ldots, d_v \rangle = \{ \sum_{i=1}^{v} n_i d_i, n_i \in \mathbb{N} \} \). \(M = S \setminus \{0\} \) will denote the maximal integer of \(S \), \(e \) the multiplicity of \(S \), that is the smallest positive integer of \(S \), \(g \) the Frobenius number of \(S \), that is the greatest integer which does not belong to \(S \). A relative ideal of \(S \) is a nonempty subset \(I \) of \(\mathbb{Z} \) such that \(I + S \subseteq I \) and \(I + s \subseteq S \), for some \(s \in S \). A relative ideal which is contained in \(S \) is an integral ideal of \(S \). If \(I, J \) are relative ideals of \(S \), then the following are relative ideals too: \(I \cap J, I \cup J, I + J = \{ i + j, i \in I, j \in J \}, I - J = \{ z \in \mathbb{Z} | z + J \subseteq I \}, I - J = (I - J) \cap S \). An integral ideal \(I \) of a numerical semigroup \(S \) is called irreducible if it is not the intersection of two integral ideals which properly contain \(I \). Consider the partial order on \(S \) given by \(s_1 \leq s_2 \iff s_1 + s_3 = s_2 \), for some \(s_3 \in S \), and for \(s \in S \), set \(B(s) = \{ x \in S | x \leq s \} \).

Proposition 1. Let \(I \) be a proper integral ideal of \(S \). Then \(I \) is irreducible if and only if \(I = S \setminus B(s) \), for some \(s \in S \).

Theorem 1. a) If \(I \) is a proper integral ideal of \(S \) and if \((I - M) \setminus I = \{ s_1, \ldots, s_n \} \), then \(I = (S \setminus B(s_1)) \cap \ldots \cap (S \setminus B(s_n)) \) is the unique irredundant decomposition of \(I \) in integral irreducible ideals.

b) \(I \) is irreducible if and only if \(|(I - M) \setminus I| = 1 \).

A relative ideal \(I \) of a numerical semigroup \(S \) is called \(\mathbb{Z} \)-irreducible if it is not the intersection of two relative ideals which properly contain \(I \). A particular relative ideal of \(S \) plays a special role, it is the canonical ideal \(\Omega \) which is maximal with respect to the property of non containing \(g \), the Frobenius number of \(S \). Thus \(\Omega = \{ g - x, x \in \mathbb{Z} \setminus S \} \).

Proposition 2. Let \(J \) be a relative ideal of \(S \). Then \(J \) is \(\mathbb{Z} \)-irreducible if and only if \(J = \Omega + z \) for some \(z \in \mathbb{Z} \), if and only if \(|(J - \Omega \setminus M) \setminus J| = 1 \).

Theorem 2. \(I \) is a relative ideal of \(S \) minimally generated by \(i_1, \ldots, i_h \) if and only if \(\Omega - I = (\Omega - i_1) \cap \ldots \cap (\Omega - i_h) \) is the unique irredundant decomposition of \(\Omega - I \) in \(\mathbb{Z} \)-irreducibles ideals.

Text presented during the meeting “Third International Meeting on Integer-Valued Polynomials” organized by Sabine Evrard. 29 novembre-3 décembre 2010, C.I.R.M. (Luminy).

2000 Mathematics Subject Classification. 13A15, 13H10.

Key words. Numerical semigroup, canonical ideal, irreducible ideal.
Corollary 1. Each relative ideal J of S has a unique irredundant decomposition as intersection of $\mathbb{Z}\text{-irreducible}$ ideals. The number of components is the cardinality of a minimal set of generators of $\Omega = \frac{J}{Z}$, which is also equal to $|\{J + M\}/J|$.

Applications to one-dimensional Rings: As usual, an integral ideal I of a ring R is called irreducible if it is not the intersection of two proper overideals. A fractional ideal F of a ring R with total ring of fractions K is called $K\text{-irreducible}$ if it is not the intersection of two strictly larger fractional ideals.

Using the following lemma, we recover a known result with Proposition 3 below [4, Proposition 3.1.6, p.67].

Lemma 1. Let I be an ideal of a local ring (R,m) and J an irreducible ideal such that $I \subseteq J$. Then $l_R((I : \overline{m})/J \cap (I : \overline{m})) \leq 1$.

Proposition 3. Let (R,m) be a Noetherian local ring and I be an m-primary ideal. Then the number $n(I)$ of components of an irredundant decomposition of I is

$$n(I) = l_R((I : \overline{m})/I) = \dim_{R/I} \text{Socle}(R/I)$$

Corollary 2. Let (R,m) be a Noetherian local ring and I be an m-primary ideal. Then I is irreducible if and only if $l_R((I : \overline{m})/I) = 1$.

Let R be an integral domain with field of fractions K. A fractional ideal ω of R is called an m-canonical ideal if for any nonzero fractional ideal I of R, we have $I = \omega : \overline{R} (\omega : I)$. We fix from here on the following notation: (R,m) is a one-dimensional analytically irreducible Noetherian domain. This is a domain for which the integral closure $V = \overline{R}$ in the field of fractions K of R is a rank-one discrete valuation domain and is a finitely generated R-module.

Let $v : K \setminus \{0\} \rightarrow \mathbb{Z}$ be the normalized valuation associated to V. Thus, if $t \in V$ generates the maximal ideal of V, then $v(t) = 1$. Moreover, we assume that $R/m \simeq V/M$, where $M = tV$ is the maximal ideal of V, i.e. R is residually rational. A one-dimensional analytically irreducible Noetherian domain has an m-canonical ideal, cf. e.g. [2]. Observe that: $S = v(R) = \{v(r) : r \in R \setminus \{0\}\}$ is a numerical semigroup. We denote by Ω the canonical ideal of $v(R)$.

Proposition 4. Let F be a fractional ideal of R. Then F is $K\text{-irreducible}$ if and only if $l_R(F : \overline{m/F}) = 1$ if and only if $v(F) = \Omega + z$, for some $z \in \mathbb{Z}$.

Corollary 3. Let F be a fractional ideal of R. Then F is $K\text{-irreducible}$ if and only if $v(F)$ is $\mathbb{Z}\text{-irreducible}$.

It is a natural question to ask whether a result similar to Corollary 3 holds for integral ideals.

Theorem 3. Let I be a non-zero integral ideal of R such that $v(I)$ is irreducible, then I is irreducible.

Proof: Now I is m-primary, so $I \subset (I : \overline{m})$. Since $v(I : \overline{m}) \leq (v(I) - v(m)) \leq (v(I) - v(m)) \leq 1$, where the last equality follows from Theorem 1 b). So by Corollary 2, I is irreducible.

The converse of Theorem 3 does not hold, as the following example shows.

Example: $S = \{2,5\}$, $R = k[[t^2,t^5]]$, $I = (t^4+t^5+t^7)$, we have: $v(I) = v(m) = 0.5$, $v(S) = 5$, then by Theorem 1, $v(I) = (S \setminus B(2)) \cap (S \setminus B(5))$. So $v(I)$ is not irreducible.

But, $I = (I : \overline{m}/I) = (v(I) : \overline{m}/I) = 1$. In fact, consider $f = a_2t^2 + a_4t^4 + a_5t^5 + \ldots \in R$, with $a_2 \neq 0$. If $f \notin I$, then $f \notin I$, such that $h = b_0 + b_2t^2 + b_4t^4 + \ldots$, then $0 = b_0 = a_2$, so that $f \notin I$. Thus $f \notin (I : \overline{m})$. Hence I is irreducible.

Corollary 4. Let I be a monomial ideal of $k[[t^1,\ldots,t^m]]$. Then, I is irreducible if and only if $v(I)$ is irreducible.
Irreducibility of ideals in a one-dimensional ring

In other terms, the non trivial deduction of Corollary 4 says that, if \(I \) is a monomial ideal which is not the intersection of two strictly larger monomial ideals, then \(I \) is not the intersection of two strictly larger ideals, even if non monomial ideals are allowed. This is indeed known in a more general context [6, Proposition 11, p.41].

Algorithm: The following algorithm is a method for computing the components of an irredundant decomposition of a non zero ideal \(I \) of \(R \).

1. Compute the length of \((I :_R m/I) \) as \(R \)-module, \(l_R(I :_R m/I) = n \)
2. Look at a set of generators of \((I :_R m/I) \) as \(R/m \) vector space.
\[
(I :_R m/I) = \langle f_1 + I, \ldots, f_n + I \rangle.
\]
3. Let for \(i = 1, \ldots, n \),
\[
J_i = (I, f_1, f_{i-1}, f_{i+1}, \ldots, f_n)
\]
4. For each \(J_i \), we will construct another ideal \(J'_i \) such that \(J_i \subseteq J'_i \), \(J'_i \) is irreducible and \(\bigcap J'_i = I \).
5. Compute the length of \((J_i :_R m/J_i) \).
 If \(l_R(J_i :_R m/J_i) = 1 \), then we take \(J'_i = J_i \).
 If not, look at a set of generators \((g_1 + J_i, \ldots, g_j + J_i) \) of \((J_i :_R m/J_i) \) as \(R/m \) vector space.
 Since \(I :_R m \subseteq J_i :_R m \) and \(f_i \notin J_i \), we can take \(g_1 = f_i \).
6. Iterating the construction above we will obtain:
\[
J_{i_1} = (J_i, g_2, \ldots, g_s)
\]
\[
J_{i_2} = (J_i, f_1, g_3, \ldots, g_s)
\]
\[
\vdots
\]
\[
J_{i_k} = (J_i, f_1, \ldots, g_{s-1})
\]
Yet we are interested only in the ideal \(J_{i_1} \) which does not contain \(f_i = g_1 \).
7. Compute the length of \((J_{i_1} :_R m/J_{i_1}) \).
 If \(l_R(J_{i_1} :_R m/J_{i_1}) = 1 \), then we take \(J'_i = J_{i_1} \). If not we proceed in the same way. After at most \(k - 2 \) steps, where \(k = l_R(R/I) \), we find an irreducible ideal \(J'_i \).
8. It is easy to see that \(\bigcap_{i \neq j} J'_i \not\subseteq J'_i \), because \(f_i \in \bigcap_{i \neq j} J'_i \) but \(f_i \notin J'_i \). We claim that \(I = \bigcap_{i=1}^n J'_i \) is an irreducible intersection of \(I \) into irreducible ideals. In fact suppose that we have \(I \subseteq \bigcap_{i=1}^n J'_i \). Then
\[
I \subseteq \bigcap_{i=1}^n J'_i \subseteq J'_1 \cap \ldots \cap J'_n \subseteq \ldots \subseteq J'_n \cap J'_{n-1} \cap \ldots \cap J'_2 \cap J'_1 \cap \left((I :_R m) \cap (I :_R m) \right),
\]
a contradiction since \(l_R = (I :_R m/I) = n \), so \(I = \bigcap_{i=1}^n J'_i \).

References

Dipartimento di Matematica, Sapienza, Università di Roma, Piazzale A. Moro 2, 00185 Rome, ITALY • barucci@mat.uniroma1.it

Department of Mathematics, Faculty of Sciences, 5000 Monastir, TUNISIA. • koja-faten@yahoo.fr