Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières

RENCONTRE ORGANISÉE PAR :
Sabine Evrard

29 novembre-3 décembre 2010

Sophie Frisch

Integer-valued polynomials on algebras: a survey
<http://acirm.cedram.org/item?id=ACIRM_2010__2_2_27_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) FRANCE

cedram
Texte mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
Integer-valued polynomials on algebras:
a survey

Sophie Frisch

Abstract
We compare several different concepts of integer-valued polynomials on algebras and
collect the few results and many open questions to be found in the literature.

1. Introduction

Let D be a domain with quotient field K. The popular ring of integer-valued polynomials $\text{Int}(D) = \{ f \in K[x] \mid f(D) \subseteq D \}$ has been generalized to polynomials acting on non-commutative algebras in different ways by different authors. Some consider polynomials with coefficients in K that map a given D-algebra to itself. For instance, Loper [5] and the present author [2,3] have investigated polynomials with rational coefficients mapping $n \times n$ integer matrices to integer matrices.

Others consider polynomials with coefficients in a non-commutative K-algebra that map a given D-subalgebra to itself. For instance, Werner [6] has investigated polynomials with coefficients in the rational quaternions mapping integer quaternions to integer quaternions; Werner [7] and the present author [3] have looked at polynomials with coefficients in $M_n(K)$ mapping matrices in $M_n(D)$ to matrices in $M_n(D)$.

Before we give a precise definition of two types of rings of integer-valued polynomials on algebras, a few examples (in one variable). For lack of a better idea, we write the first kind of integer-valued polynomial rings, those with coefficients in K, with parentheses: $\text{Int}_D(A)$, and the second kind, those with coefficients in a K-algebra, with square brackets: $\text{Int}_D[A]$. Throughout this paper, D is an integral domain, not a field, with quotient field K.

Example 1.1. For fixed $n \in \mathbb{N}$, consider

\[\text{Int}_D(M_n(D)) = \{ f \in K[x] \mid \forall C \in M_n(D) : f(C) \in M_n(D) \} \]
\[\text{Int}_D[M_n(D)] = \{ f \in (M_n(K))[x] \mid \forall C \in M_n(D) : f(C) \in M_n(D) \} \].

Example 1.2. Let $Q = \mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}k$ be the \mathbb{Q}-algebra of rational quaternions and L the \mathbb{Z}-subalgebra of Lipschitz quaternions $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$.

\[\text{Int}_\mathbb{Z}(L) = \{ f \in \mathbb{Q}[x] \mid \forall z \in L : f(z) \in L \} \]
\[\text{Int}_\mathbb{Z}[L] = \{ f \in \mathbb{Q}[x] \mid \forall z \in L : f(z) \in L \} \]

Text presented during the meeting “Third International Meeting on Integer-Valued Polynomials” organized by Sabine Evrard. 29 novembre-3 décembre 2010, C.I.R.M. (Luminy).

2000 Mathematics Subject Classification. 13F20, 13F05, 13B25, 13J10, 11C08, 11C20.

Key words. Integer-valued polynomials, matrices, quaternions, group rings, Prüfer domains.
Example 1.3. Let G be a finite group, $K(G)$ and $D(G)$ group rings.

$$\text{Int}_D(D(G)) = \{ f \in K[x] \mid \forall z \in D(G) : f(z) \in D(G) \}$$

$$\text{Int}_D[D(G)] = \{ f \in K(G)[x] \mid \forall z \in D(G) : f(z) \in D(G) \}$$

Example 1.4. Let $D \subseteq A$ be Dedekind rings with quotient fields $K \subseteq F$.

$$\text{Int}_D(A) = \{ f \in K[x] \mid f(A) \subseteq A \}.$$

Convention 1.5. Let D be a domain and not a field, K the quotient field of D, and A a torsion-free D-algebra that is finitely generated as a D-module.

Since A is faithful, we have an isomorphism of D embedded in A (by $d \mapsto d1_A$). Let $B = K \otimes_D A$ (canonically isomorphic to the ring of fractions $A_D(\{g\})$). Then the natural homomorphisms $\iota_K : K \to K \otimes_D A, k \mapsto k \otimes 1_A$ and $\iota_A : A \to K \otimes_D A, a \mapsto 1_K \otimes a$ allow us to evaluate in B polynomials with coefficients in K or B at arguments in A, and we define:

$$\text{Int}_D(A) = \{ f \in K[x] \mid \forall a \in A : f(a) \in A \}$$

$$\text{Int}_D[A] = \{ f \in (K \otimes_D A)[x] \mid \forall a \in A : f(a) \in A \}$$

Note that ι_K and ι_A are injective whenever A is a torsion-free D-module. To exclude unwanted cases such as $A = K$ we require $K \cap A = D$ (or, more precisely, $\iota_K(K) \cap \iota_A(A) = \iota_A(D)$).

Note that $K \cap A = D$ implies

$$\text{Int}_D(A) \subseteq \text{Int}(D) = \{ f \in K[x] \mid f(D) \subseteq D \}.$$

With the conventions above, $\text{Int}_D(A)$ is easily seen to be a ring. In particular, $\text{Int}_D(A)$ is closed with respect to multiplication, because $(fg)(a) = f(a)g(a)$ for all $a \in A$ and $f, g \in K[x]$. By the same token, $\text{Int}_D[A]$ is a ring for commutative A. The argument involving substitution homomorphism works only in the commutative case, however. For non-commutative A, multiplicative closure of $\text{Int}_D[A]$ is not evident. We will look into this in the next section.

2. Non-commutative Coefficient Rings

Theorem 2.1 (Werner [7]). If A is finitely generated by units as a D-algebra, then $\text{Int}_D[A]$ is closed under multiplication, and hence, is a ring.

Proof. Let $f(x) = \sum_k \beta_k x^k$ and $g(x)$ be in $\text{Int}_D[A]$ and $\alpha \in A$. To show $(fg)(\alpha) \in A$, we first check the special case where $g = u$, a unit in A:

$$(fu)(\alpha) = \sum_k \beta_k u^k \alpha = \sum_k \beta_k (u \alpha u^{-1})^k u = f(u \alpha u^{-1}) u \in A.$$

Now for general $f, g \in \text{Int}_D[A]$:

$$(fg)(\alpha) = \sum_{m,l} \beta_m \gamma_l \alpha^{m+l} = \sum_m \beta_m (\sum_l \gamma_l \alpha^l) \alpha^m = \sum_m \beta_m g(\alpha) \alpha^m.$$

Expressing $g(\alpha)$ as a D-linear combination of units u_1, \ldots, u_n of A,

$$g(\alpha) = d_1 u_1 + \ldots + d_n u_n,$$

yields

$$(fg)(\alpha) = \sum_m \beta_m (\sum_{j=1}^n d_j u_j) \alpha^m = \sum_{j=1}^n d_j \sum_m \beta_m u_j \alpha^m = \sum_{j=1}^n d_j (fu_j)(\alpha).$$

Since $d_j \in D$ and each $(fu_j)(\alpha)$ is in A, it follows that $(fg)(\alpha)$ is in A.

\[\square\]
Remark 2.2. In all three non-commutative examples in the introduction, A is generated as a D-module by units, and $\text{Int}_D[A]$ is therefore a ring. In example 1.1, for instance, the free D-module $M_n(D)$ of dimension n^2 has the following basis (suggested by L. Vaserstein) consisting of matrices of determinant 1: let $E_{i,j}(\lambda)$ for $i \neq j$ denote the elementary matrix with ones on the diagonal, λ in position (i, j), and zeros elsewhere. As basis, take the $n^2 - n$ elementary matrices $E_{i,j}(1)$ for $i \neq j$ together with the n products of two elementary matrices $E_{i,i+1}(1)E_{i+1,i}(-1)$ for $1 \leq i \leq n$ (with indices $\mod n$, i.e., $n + 1 = 1$).

One of the rings of the form $\text{Int}_D[A]$ for non-commutative A that have been examined in some detail is $\text{Int}_\mathbb{Z}[L]$, the ring of polynomials with coefficients in the rational quaternions mapping integer quaternions to integer quaternions. Werner [6] has shown $\text{Int}_D[A]$ to be non-Noetherian, and has exhibited some prime ideals.

In his forthcoming paper [7], Werner explores $\text{Int}_D[M_n(D)]$, and shows that every ideal of this ring is generated as a left $M_n(D)$-module by elements of $K[x]$. Using ideas from [7], one can show more, however: the ring $\text{Int}_D[M_n(D)]$ of polynomials with coefficients in $M_n(K)$ that map every matrix in $M_n(D)$ to a matrix in $M_n(D)$ is isomorphic to the ring of $n \times n$ matrices over the ring $\text{Int}_D(M_n(D))$ of polynomials in $K[x]$ that map every matrix in $M_n(D)$ to a matrix in $M_n(D)$.

Theorem 2.3. Let

$$\text{Int}_D(M_n(D)) = \{ f \in K[x] \mid \forall C \in M_n(D) : f(C) \in M_n(D) \},$$

$$\text{Int}_D[M_n(D)] = \{ f \in (M_n(K))[x] \mid \forall C \in M_n(D) : f(C) \in M_n(D) \}.$$

We identify $\text{Int}_D[M_n(D)]$ with its isomorphic image under the natural ring isomorphism

$$\varphi: (M_n(K))[x] \rightarrow M_n(K[x]), \quad \sum_k \left(\sum_{i,j} a_{ij}^{(k)} x^k \right) \rightarrow \left(\sum_k \left(\sum_{i,j} a_{ij}^{(k)} x^k \right) \right)_{1 \leq i,j \leq n}.$$

Then

$$\text{Int}_D[M_n(D)] = M_n(\text{Int}_D(M_n(D))).$$

Corollary 2.4. Under the identification of $\text{Int}_D[M_n(D)]$ with its isomorphic image in $M_n(K[x])$, the ideals of $\text{Int}_D[M_n(D)]$ are precisely the sets of the form $M_n(I)$, where I is an ideal of $\text{Int}_D(M_n(D))$. Prime ideals of $\text{Int}_D[M_n(D)]$ correspond to prime ideals of $\text{Int}_D(M_n(D))$ and vice versa.

Our definition of prime ideal for a possibly non-commutative ring R is: a two-sided ideal $P \neq R$, such that for any two-sided ideals A, B of R, $AB \subseteq R$ implies $A \subseteq P$ or $B \subseteq P$.

It might be interesting to generalize Theorem 2.3 to other rings of integer-valued polynomials on a D-algebra A with coefficients in a non-commutative K-algebra B. Given a matrix representation $B \subseteq M_n(K)$, we can identify the ring $\text{Int}_D[A] \subseteq B[x]$ of polynomials with coefficients in B, integer-valued on A, with its image in $M_n(K[x])$ under the isomorphism of $(M_n(K))[x]$ with $M_n(K[x])$.

- Starting with a matrix representation $B \subseteq M_n(K)$, is the isomorphic image of $\text{Int}_D[A] \subseteq (M_n(K))[x]$ embedded in $M_n(K[x])$ a matrix algebra over a ring of integer-valued polynomials with coefficients in K?

3. The Spectrum

We now return to commuting coefficients and describe the spectrum of $\text{Int}_D(A)$. If A is a commutative D-algebra, we also consider polynomials in several variables and define

$$\text{Int}_D^A(A) = \{ f \in K[x_1, \ldots, x_n] \mid \forall a \in A^n : f(a) \in A \}.$$
Prime ideals lying over a prime P of infinite index of D are easy to describe: they all come from prime ideals of $D_F[x]$ (or $D_F[x_1, \ldots, x_n]$, for $\text{Int}_{D_F}(A)$), since $\text{Int}_{D_F}(A) \subseteq \text{Int}(D) \subseteq D_F[x]$ (and $\text{Int}_{D_F}(A) \subseteq \text{Int}(D^n) \subseteq D_F[x_1, \ldots, x_n]$) whenever $[D : P] = \infty$ (cf. [1]).

Concerning primes lying over a maximal ideal M of finite index of D, they have been characterized for one-dimensional Noetherian D in [3]. For commutative A, they look just like the maximal ideals of $\text{Int}(D)$.

Theorem 3.1 ([3]). Let D be a domain, A a commutative torsion-free D-algebra finitely generated as a D-module, M a finitely generated maximal ideal of D of finite index and height one, such that $MA_M \cap A = MA$, and $n \in \mathbb{N}$.

Then every prime ideal of $\text{Int}_{D}^n(A)$ lying over M is maximal, and of the form

$$P_n = \{ f \in \text{Int}_{D}^n(A) \mid f(a) \in P \},$$

for some $a \in \hat{A}$ (the M-adic completion of A) and P a maximal ideal of \hat{A} with $P \cap D = M$.

Note that the somewhat technical condition $MA_M \cap A = MA$ is satisfied in two natural cases, firstly, if A is a free D-module, and secondly, if $D \subseteq A$ is an extension of Dedekind rings.

In the case of a non-commutative D-algebra A, the images of elements $a \in \hat{A}$ under $\text{Int}_{D_F}(A)$ play a rôle in the description of the maximal ideals lying above M. If the exact image $\text{Int}_{D_F}(A)(a)$ is not known, it can be replaced by a commutative ring R_a between $\text{Int}_{D_F}(A)(a)$ and \hat{A}.

Theorem 3.2 ([3]). Let D be a domain, A a torsion-free D-algebra finitely generated as a D-module, M a finitely generated maximal ideal of D of finite index and height one, such that $MA_M \cap A = MA$.

The prime ideals of $\text{Int}_{D_F}(A)$ lying over M are precisely the ideals of the form

$$P_n = \{ f \in \text{Int}_{D_F}(A) \mid f(a) \in P \},$$

where $a \in \hat{A}$ (the M-adic completion of A), and P is a maximal ideal of $\text{Int}_{D_F}(A)(a)$ (the image of a under $\text{Int}_{D_F}(A)$) with $P \cap D = M$.

We can replace $\text{Int}_{D_F}(A)(a)$ by a commutative ring R_a with $\text{Int}_{D_F}(A)(a) \subseteq R_a \subseteq \hat{A}$ for the simple reason that every extension of finite commutative rings, in particular the ring extension $\text{Int}_{D_F}(A)(a)/\text{Int}_{D_F}(A)(a) \cap M\hat{A} \subseteq R_a/(R_a \cap M\hat{A})$ satisfies “lying over”.

Corollary 3.3. Under the hypotheses of Theorem 3.2, suppose we are given, for every $a \in \hat{A}$, a commutative ring R_a with $\text{Int}_{D_F}(A)(a) \subseteq R_a \subseteq \hat{A}$.

Then the prime ideals of $\text{Int}_{D_F}(A)$ are precisely the ideals of the form

$$P_n = \{ f \in \text{Int}_{D_F}(A) \mid f(a) \in P \},$$

where $a \in \hat{A}$ and P is a maximal ideal of R_a lying over M.

For $A = M_n(D)$, and $a \in A$, the image of a under $\text{Int}(A)(a)$ is just $D[a]$, and for a general $a \in \hat{A}$, the image of a under $\text{Int}(A)(a)$ is contained in $\hat{D}[a]$ (cf. [3]), so that we may take $R_a = \hat{D}[a]$ in Corollary 3.3. For other algebras, the question is open:

- is there a simple description of the image of an element $a \in \hat{A}$ under $\text{Int}_{D_F}(A)$?

Another property of the ring of integer-valued polynomials on matrices is waiting for generalization. If D is a domain with zero Jacobson radical, such as, for instance, a Dedekind ring with infinitely many maximal ideals, then the subset C of $M_n(D)$ consisting of the companion matrices of all monic irreducible polynomials in D is a polynomially dense subset of $M_n(D)$, i.e., every polynomial $f \in \mathbb{K}[x]$ with $f(C) \in M_n(D)$ for every $C \in C$ is in $\text{Int}_{D}(M_n(D))$. This prompts the question, for a general D-algebra A,

- does A have a polynomially dense subset of elements with irreducible minimal polynomial in $\mathbb{K}[x]$?
4. A NON-TRIVIALITY CRITERION

For rings of integer valued polynomials with coefficients in a field, of the type

\[\text{Int}_D(A) = \{ f \in K[x] \mid f(A) \subseteq A \}, \]

or, for commutative \(A, \)

\[\text{Int}^n_D(A) = \{ f \in K[x_1, \ldots, x_n] \mid \forall a_1, \ldots, a_n \in A : f(a_1, \ldots, a_n) \in A \}, \]

we have the inclusions

\[D[x] \subseteq \text{Int}_D(A) \subseteq \text{Int}(D) \subseteq K[x], \]

and similarly for several variables. As before, \(D \) is a domain with quotient field \(K, \) \(A \) a torsion-free \(D \)-algebra finitely generated as a \(D \)-module, and evaluation of polynomials is performed in \(B = K \otimes_D A. \) As noted in the introduction, we also require (of the homomorphic images in \(B \)) that \(K \cap A = D. \)

\[\text{Int}_D(A) \]

is considered trivial if \(\text{Int}_D(A) = D[x]. \) We will see that the non-triviality criterion for \(\text{Int}(D) = \{ f \in K[x] \mid f(D) \subseteq D \} \) for Noetherian \(D \) [1, Thm. 1.3.14] carries over to \(\text{Int}_D(A). \)

Lemma 4.1. Let \(A \) be a torsion-free \(D \)-algebra that is finitely generated as a \(D \)-module, and let \(n \in \mathbb{N}. \) If there exists a proper ideal of \(D \) of the form \(I = (b : D c) \) (with \(b, c \in D \)) of finite index, then \(\text{Int}^n_D(A) \neq D[x_1, \ldots, x_n]. \)

Proof. Say \(A \) is generated by \(d \) elements as a \(D \)-module. Then every element of \(A \) is integral of degree at most \(d \) over \(D. \) Given \(I = (b : D c) \neq D \) of finite index, let \(f \in D[x] \) be a monic polynomial that is divisible modulo \(I[x] \) by every monic polynomial of degree at most \(d. \) Then for every \(a \in A, f(a) \in IA, \) and hence \(\frac{c}{b} f(a) \in A. \) If follows that \(\frac{c}{b} f(x) \) is in \(\text{Int}_D(A) \) (as well as in \(\text{Int}^n_D(A) \) for all \(n \geq 1), \) but not in \(D[x], \) since its leading coefficient \(\frac{c}{b} \) is not in \(D. \)

Lemma 4.2. If, for some \(n \in \mathbb{N}, \) \(\text{Int}^n_D(A) \neq D[x_1, \ldots, x_n] \) then there exists a proper ideal of \(D \) of the form \(I = (b : D c) \) (with \(b, c \in D) \) such that every prime ideal \(P \) of \(D \) containing \(I \) is of finite index.

Proof. Let \(b, c \in D \) such that \(k = \frac{c}{b} \notin D \) occurs as a coefficient of a polynomial in \(\text{Int}^n_D(A). \) If \(P \) is a prime ideal of infinite index in \(D, \) then \(\text{Int}^n_D(A) \subseteq D_P[x_1, \ldots, x_n]; \) so there exists some \(s \in D \setminus P \) with \(sk \in D, \) i.e., with \(s \in (b : D c). \) This means that \((b : D c) \) is not contained in any prime ideal of infinite index.

It is easy to see that, for arbitrary fixed \(b \in D, \) an ideal that is maximal among proper ideals of the form \((b : d) \) (with \(d \in D) \) is prime. In a Noetherian domain \(D \) therefore, every proper ideal \(I = (b : c) \) is contained in a prime ideal \(P = (b : d). \) This shows that for a Noetherian domain \(D \) and a \(D \)-algebra \(A \) whose elements are integral of bounded degree over \(D, \) the necessary and the sufficient condition for \(\text{Int}_D(A) \neq D[x] \) (in 4.1 and 4.2, respectively) are each equivalent to:

\[D \] has a prime ideal of finite index of the form \(P = (b : d). \)

If, given an ideal \(I \) of \(D, \) we call a prime ideal of the form \((I : D d) \) (with \(d \in D \)) an *associated prime ideal* of \(I \) then our criterion for non-triviality of \(\text{Int}^n_D(A) \) in the Noetherian case becomes:

Theorem 4.3. Let \(D \) be a Noetherian domain and \(A \) a torsion-free \(D \)-algebra that is finitely generated as a \(D \)-module and let \(n \in \mathbb{N}. \) Then \(\text{Int}^n_D(A) \neq D[x_1, \ldots, x_n] \) if and only if \(D \) has a prime ideal of finite index that is an associated prime of a principal ideal of \(D. \)

A different question of non-triviality is, whether \(\text{Int}_D(A) \) is properly contained in \(\text{Int}(D). \) (Recall that \(\text{Int}_D(A) \subseteq \text{Int}(D) \) follows from our convention \(K \cap A = D. \)) Let \(K \) be a number field and \(O_K \) its ring of algebraic integers. It has been shown by Halter-Koch and Narkiewicz [4] that \(\text{Int}_\mathbb{Z}(O_K) \) is always properly contained in \(\text{Int}(\mathbb{Z}). \) For general \(D \) and \(A \) it is an open question,

- under what hypotheses is \(\text{Int}_D(A) \subseteq \text{Int}(D)? \)
5. PRÜFER OR NOT PRÜFER

For rings of integer-valued polynomials on algebras of the type
\[\text{Int}_\mathbb{Z}(A) = \{ f \in \mathbb{Q}[x] \mid f(A) \subseteq A \}, \]
for a \(\mathbb{Z} \)-algebra \(A \), the big question is, what are criteria for \(\text{Int}_\mathbb{Z}(A) \) to be Prüfer, or just to be integrally closed?

In some interesting special cases Loper [5] has the answer:

Theorem 5.1 (Loper [5]).

1. Let \(\mathcal{O}_K \) be the ring of algebraic integers in the number field \(K \). Then \(\text{Int}_\mathbb{Z}(\mathcal{O}_K) \) is Prüfer.
2. Let \(M_2(\mathbb{Z}) \) be the ring of \(2 \times 2 \) integer matrices, then \(\text{Int}_\mathbb{Z}(M_2(\mathbb{Z})) \) is not Prüfer.
3. Let \(L \) be the ring of integer (Lipschitz) quaternions. Then \(\text{Int}_\mathbb{Z}(L) \) is not Prüfer.

In cases 2 and 3, Loper shows that the ring in question is not Prüfer by exhibiting an overring that is not integrally closed. For any non-commutative \(\mathbb{Z} \)-algebra \(A \), such as \(A = M_n(\mathbb{Z}) \) or \(A = L \), this prompts the following questions:

- Is \(\text{Int}_\mathbb{Z}(A) \) integrally closed?
- What is its integral closure?
- Is the integral closure Prüfer?

References

Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria • frisch@TUGraz.at